카테고리 보관물: 융합과학

철분 부족은 남극해의 먹이 사슬의 핵심인 미생물을 위협합니다.

식물성 플랑크톤 꽃은 철분이 풍부한 물의 융기에 달려 있습니다.

 

Iron shortage threatens microbes key to food chain in Southern Ocean

Phytoplankton blooms depend on the upwelling of iron-rich water

23 FEB 20232:00 PMBYWARREN CORNWALL

https://www.science.org/content/article/iron-shortage-threatens-microbes-key-food-chain-southern-ocean

의 간단 번역입니다.

매년 봄 남극 대륙의 얼음 해안에서 우주에서 볼 수 있을 정도로 큰 생명의 폭발이 펼쳐집니다. 철분이 풍부한 물이 아래에서 솟아오르면 남극해의 표면은 밝은 녹색 식물성 플랑크톤의 환각 구름으로 소용돌이치며, 단세포 생물은 대기에서 탄소를 빨아들이고 크릴을 유지하여 먹이 사슬의 기초를 형성하며, 크릴은 차례로 물고기, 고래, 펭귄의 주요 먹이 공급원입니다.

 

이제 한 과학자 그룹은 지난 25년 동안 생태계와 기후에서 중요한 역할을 하는 이 계절적 꽃이 위험에 처할 수 있다고 말합니다. 남극해의 식물성 플랑크톤은 광합성 기계의 빌딩 블록인 철이 점점 더 굶주리고 있으며 생산성이 감소할 수 있는 징후가 있습니다. 오늘 Science 지에 발표된 이 발견은 많은 기후 모델이 다가오는 세기에 대해 예측한 생산성의 급증에 직접 반대하는 놀라운 일입니다.

 

변화의 명백한 속도는 “정말 놀랍다”고 채플 힐에 있는 노스 캐롤라이나 대학의 생물 해양학자인 Adrian Marchetti는 식물성 플랑크톤을 연구하지만, 연구에 직접 참여하지는 않았다고 말합니다. 식물성 플랑크톤의 큰 감소는 “지구 탄소 순환에 실제로 영향을 미칠 수 있다”라고, 해양 탄소를 연구하는 워싱턴 대학교 시애틀 해양학자 앨리슨 그레이는 덧붙인다.

 

 

해양 철분 수준은 남극해에서 식물성 플랑크톤 생산성을 제한하는 중요한 요소로 알려졌지만 연구하기 어려운 것으로 악명이 높습니다. 로봇 센서나 연구선은 일상적으로 영양소를 찾지 않습니다. 그래서 과학자들은 최근에 식물성 플랑크톤이 철분 부족에 대처하고 있다는 신호를 찾아 그 수준을 추론하기 시작했습니다.

 

새로운 연구는 식물성 플랑크톤이 방출하는 빛을 비광화학 담금질이라고 불리는 생리적 과정의 징후로 분석했는데, 여기서 식물성 플랑크톤은 열을 방출하여 과도한 햇빛을 처리합니다. 담금질은 철분 스트레스의 지표인데, 영양소가 부족한 식물성 플랑크톤은 빛에 더 취약하게 만드는 방식으로 생리학을 변경하기 때문입니다. 194 년부터 시작된 연구 선박의 194회 여행과 1996년부터 표류하는 47개의 센서를 실은 부유물의 데이터에서 연구원들은 빛 노출의 변화를 조정할 때 담금질이 연간 거의 5% 증가한 것을 발견했습니다. 이 추세는 지난 2년 동안 식물성 플랑크톤이 충분한 철분을 얻기 위해 점점 더 고군분투하고 있음을 시사한다고 남아프리카 정부의 남극해 탄소 및 기후 관측소의 생지화학자이자 Science 논문의 수석 저자 인 Tommy Ryan-Keogh는 말합니다.

 

Ryan-Keogh와 그의 공동 연구자들은 플랑크톤 꽃의 위성 이미지와 바다 부유물의 측정을 사용하여 1998 년부터 변화를 추적하여 식물성 플랑크톤 생산성도 조사했습니다. 그들은 데이터를 순 식물성 플랑크톤 생산성의 추정치로 변환하기 위해 모델에 의존하여 남극해에서 작지만, 통계적으로 유의미한 생산성 감소를 발견했습니다.

 

쇠퇴가 현실이라고 해도 철이 역할을 하고 있는지는 확실하지 않습니다. 수십 년 동안 남극해의 철 역학을 연구해 온 태즈메이니아 대학의 생지화학자인 필립 보이드는 다른 잠재적 요인을 지적합니다. 예를 들어, 해양 동물은 식물성 플랑크톤을 더 많이 먹을 수 있습니다. “철 스트레스와 순 1차 생산을 직접 연결하는 것은 긴 활입니다.”라고 그는 말합니다.

 

식물성 플랑크톤이 철분 부족에 직면하는 이유도 명확하지 않습니다. 현재의 기후와 해양 모델은 기후 변화에 따라 남극해의 바람이 남쪽으로 이동하여 더 많은 융기를 일으켜 바다 깊은 곳에서 표면으로 철을 가져오고 생산성의 폭발을 촉진하리라 예측합니다. Ryan-Keogh는 식물성 플랑크톤에 철분이 부족한 세 가지 가능한 이유를 제안합니다 : 이산화탄소 수준 상승으로 인한 해양 산성화는 영양소 흡수를 더 어렵게 만들 수 있으며, 해수 온도 상승은 신진대사를 가속하고 철분 수요를 증가시킬 수 있으며, 해양 혼합의 다른 층이 더 깊은 곳의 움직임을 제한할 방법의 변화, 철분이 풍부한 물이 표면을 향합니다. “이를 테스트하려면 많은 실험실 작업이 필요합니다.”라고 Ryan-Keogh는 말합니다.

 

무슨 일이 일어나고 있는지 분리하는 것은 남극해의 미래 생태계 변화를 이해하는 것뿐만 아니라 지구 기후의 운명을 예측하는 데에도 중요합니다. 남극해는 중요한 탄소 흡수원입니다. 바다에 용해되는 모든 탄소 오염의 절반이 바다에서 발생합니다. 그 용해 된 탄소 중 일부는 식물성 플랑크톤에 의해 흡수되어 생물 또는 생물을 먹는 유기체가 죽어 바닥으로 가라앉을 때 저장됩니다.

 

이 연구에 참여한 리버풀 대학의 해양학자 알레산드로 타글리아부에(Alessandro Tagliabue)는 철 기아 추세가 일시적일 수 있다고 말합니다. 그러나 미래의 풍요를 예측하는 모델이 남극해와 그곳에 사는 유기체에 대해 잘못 표현하고 있을 수도 있습니다. “우리는 모델이 현재의 추세를 재현하지 않는 이유를 알아야 합니다.”라고 해양 생지화학적 과정 모델링을 전문으로 하는 Tagliabue는 말합니다.

 

널리 사용되는 여러 기후 모델을 연구한 캘리포니아 대학교 어바인 (University of California, Irvine)의 해양학자 키스 무어 (Keith Moore)는 이 추세가 오래 가지 못할 것이라고 확신한다. 그는 이 논문이 현재 식물성 플랑크톤의 철분 결핍이 증가하고 있다는 설득력 있는 사례를 제시한다고 말하지만, 무어는 모델이 예측한 대로 바람이 결국 남쪽으로 이동하고 식물성 플랑크톤 꽃이 그 어느 때보다 무성해질 것으로 예상합니다. “지금 일어나고 있는 일은 그 모델들이 알아차리기에는 너무 미묘할 수 있습니다.”라고 그는 말합니다.

doi: 10.1126/science.adh3116

에볼라 바이러스에 대한 최초의 FDA 승인 치료법의 구조와 기능 발견

Structure and function of the first FDA-approved treatment for Ebola virus discovered

https://www.news-medical.net/news/20230130/Structure-and-function-of-the-first-FDA-approved-treatment-for-Ebola-virus-discovered.aspx

의 간단 번역입니다.

Reviewed by Emily Henderson, B.Sc.Jan 30 2023

라호야 면역학 연구소(LJI)의 과학자들은 자이르 에볼라바이러스(에볼라 바이러스)에 대한 최초의 FDA 승인 치료법의 구조와 기능을 밝혀냈습니다.

리제네론이 개발한 인마제브(REGN-EB3)는 에볼라 바이러스 당단백질을 표적으로 삼도록 설계된 3개의 항체 칵테일이다. 이 약물은 2020년 10월에 임상 사용을 위해 처음 승인되었지만 정확한 작용 메커니즘은 불분명합니다.

Cell Host & Microbe 최신호의 커버 스토리에서 LJI 연구원들은 에볼라 바이러스 당단백질(에볼라 바이러스 감염을 일으키는 바이러스 단백질)에 결합하는 세 가지 항체의 고해상도 3D 구조를 제시합니다. 이 모델은 약물과 바이러스에 대한 새로운 정보와 이들의 상호 작용이 감염과 싸우고 미래의 바이러스 돌연변이로부터 보호하는 방법을 보여줍니다.

새로운 연구는 또한 Inmazeb이 추가 종류의 에볼라 바이러스를 치료할 가능성을 보여줍니다.

새로운 연구는 Inmazeb (REGN-EB3)에 사용 된 3개의 항체(하늘색, 진한 파란색 및 노란색)가 감염과 싸우기 위해 에볼라 바이러스 당 단백질 (회색)의 다른 영역에 결합하는 방법을 보여줍니다.

항체 칵테일의 작동 원리

3.1 옹스트롬에서 3D 구조는 비대칭 재구성을 사용하여 조립된 에볼라 바이러스 표면 단백질의 최고 해상도 이미지입니다. 연구원들은 극저온 전자 현미경(cryo-EM)이라는 이미징 기술을 통해 이 상세한 보기를 달성했습니다.

“그것은 단백질의 머그샷을 얻는 것과 같습니다.”라고 LJI에서 박사후 연구원으로 프로젝트를 주도했으며 현재 Cryo-EM의 Pacific Northwest Center에서 근무하는 제1 저자인 Vamseedhar Rayaprolu 박사는 말했습니다. “우리는 모든 각도에서 얼어붙은 복합 단지의 사진을 찍은 다음 함께 연결하여 3D 모델을 얻습니다.”

이 이미지 덕분에 LJI 팀은 즉시 약물뿐만 아니라 에볼라 바이러스 자체에 대해서도 발견했습니다. 에볼라 당 단백질의 전반적인 구조는 얼마 동안 알려져 왔지만, 한 영역은 아직 효과적으로 모델링되지 않았습니다 – 단백질의 글리 칸 캡에있는 β17-β18 루프.

Rayaprolu는 “이 작품은 일반적으로 너무 플로피되어 이미징할 수 없지만 항체가 바이러스에 결합되었을 때 루프를 제자리에 고정시켰고 마침내 그 위치와 구조를 캡처할 수 있었습니다”라고 말했습니다.

그런 다음 연구팀은 약물의 세 가지 항체가 겹치지 않는 뚜렷한 위치에서 당 단백질에 결합하여 중복을 최소화하여 효과를 극대화한다는 것을 확인했습니다.

아톨티비맙(REGN3470)은 β17-β18 루프에 결합하는 특이적 항체입니다. 결합하면 이 항체는 면역 체계를 유인하는 신호 역할을 하여 감염된 세포가 이펙터 기능을 통해 죽임을 표시하도록 표시할 수 있습니다.

오데시비맙(REGN3471)이라고 하는 두 번째 항체는 당단백질의 수용체 결합 부위의 아미노산에 결합하여 바이러스가 인간 세포에 부착되는 것을 방지합니다.

마프티비맙(REGN3479)이라고 하는 세 번째 항체는 바이러스가 세포 속으로 들어가는 데 필요한 당단백질의 내부 융합 루프에 결합하고 뒤틀립니다. 연구원들은 또한 maftivimab이 다른 유형의 에볼라 바이러스에 대한 향후 치료법에서 가치가 있을 수 있다는 증거를 발견했습니다.

하나 이상의 바이러스 퇴치

“SARS-CoV-2와 마찬가지로 에볼라 바이러스는 시간이 지남에 따라 변했고 원래 바이러스와 달라졌습니다.”라고 Boston University Chobanian & Avedisian School of Medicine의 National Emerging Infectious Disease Laboratories (NEIDL) 교수 인 Robert Davey 박사는 말합니다. Davey가 지적했듯이 에볼라 바이러스는 더 큰 필로 바이러스 계열의 유일한 위험한 구성원이 아닙니다. 이 제품군에는 수단 에볼라바이러스(2022년 수단 에볼라바이러스 발병으로 우간다에서 최소 55명 사망) 및 더 먼 관련 마르부르크 바이러스와 같은 밀접하게 관련된 에볼라바이러스 종이 포함됩니다.

Davey의 실험실과 Regeneron의 연구 공동 연구자들이 이끄는 일련의 탈출 연구를 통해 팀은 Inmazeb이 수단 에볼라 바이러스를 포함한 필로 바이러스의 에볼라 바이러스 속의 여러 바이러스로부터 잠재적으로 보호 할 수 있음을 발견했습니다.

핵심은 마프티비맙 항체인 것으로 보인다. Maftivimab의 표적 인 바이러스 당 단백질의 내부 융합 루프는 이러한 에볼라 바이러스 전반에 걸쳐 보존됩니다. 이는 바이러스의 다른 부분이 시간이 지남에 따라 돌연변이를 일으켰음에도 불구하고 루프 구조가 크게 변경되지 않았음을 의미합니다.

“우리는 일반적으로 Inmazeb의 항체가 보다 밀접하게 관련된 바이러스에 효과적일 수 있음을 발견했습니다.”라고 Davey는 말합니다. “그러나 Marburg와 같이 더 멀리 떨어져 있는 종의 경우 새로운 항체 칵테일을 고안하기 위해 더 많은 연구가 필요합니다.”

Inmazeb은 또한 새로운 에볼라 바이러스 변종과 싸울 수 있습니까? 연구자들은 세 가지 항체가 모두 존재하는 상태에서 발견했습니다. 에볼라 바이러스는 약물의 영향을 부분적으로 피하기 위해 10 차례의 복제와 여러 돌연변이를 거쳐야 합니다. 대조적으로, 단일 항체만을 사용하면 단 하나 또는 두 개의 계대 내에서 돌연변이를 피할 수 있습니다.

이 발견은 Inmazeb이 변종에 대한 지속적인 면역을 제공 할 수 있음을 시사합니다. 새로운 발견은 또한 당 단백질을 보다 광범위하거나 효과적으로 표적으로 하는 새로운 항체 약물의 개발을 안내 할 수 있습니다.

“우리는 이제 서로 다른 항체의 착륙 부위의 미묘한 변화가 기능에 어떤 영향을 미치는지 이해합니다.”라고 Rayaprolu는 말합니다. “이것은 우리에게 다소 효과적인 면역 반응의 차이를 말해줍니다.”

“약물이 바이러스와 접촉하는 위치를 정확히 알면 새로운 바이러스 변종에 여전히 작용할 가능성이 있는지를 예측하는 데 도움이 됩니다.”라고 Saphire는 덧붙입니다. “이러한 방법과 연구 협력자들의 통찰력은 차세대 백신 개발에 필수적일 것입니다.“

Source:

La Jolla Institute for Immunology

Journal reference:

Rayaprolu, V., et al. (2023) Structure of the Inmazeb cocktail and resistance to Ebola virus escape. Cell Host & Microbe. doi.org/10.1016/j.chom.2023.01.002.