카테고리 보관물: 미분류

효소의 작용 특성 생명현상-과학 심화 탐구

◈ 효소의 작용과 특성

▣ 생명체 내에서의 화학 반응

(1) 생명체에서 일어나는 대부분의 화학 반응에는 효소의 촉매 반응이 필요하다.

(2) 촉매: 화학 반응에서 소모되거나 변화되지 않으면서 활성화 에너지를 변화시켜 반응 속도를 조절하는 물질이다. 생명체 밖에서 화학 반응을 촉진하는 무기 화합물은 무기 촉매라고 부른다.

(3) 생명체에서 합성되는 효소는 생체 촉매라고 부르며, 생명체에서 화학 반응의 속도를 증가시킨다.

Enzymes: principles and biotechnological applications

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692135/

The Central Role of Enzymes as Biological Catalysts

https://www.ncbi.nlm.nih.gov/books/NBK9921/

▣ 효소의 작용

(1) 활성화 에너지는 화학 반응이 일어나는 데 필요한 최소한의 에너지로, 반응물이 넘어야 할 에너지 장벽이다.

(2) 반응물이 활성화 에너지 이상의 충분한 에너지를 가지고 있어야만 화학 반응이 일어날 수 있다.

(3) 효소는 활성화 에너지를 낮춤으로써 더 많은 반응물이 화학 반응에 참여할 수 있도록 하여 화학 반응의 속도를 증가시킨다.

(4) 반응열: 화학 반응이 일어날 때 방출되거나 흡수되는 열로 반응물과 생성물의 에너지 차이를 의미한다. 반응열은 효소의 영향을 받지 않기 때문에 효소의 유무에 상관없이 반응열의 크기는 일정하다.

(5) 효소와 결합하는 반응물을 기질이라고 하며, 효소는 기질과 결합하여 효소·기질 복합체를 형성함으로써 활성화 에너지를 낮추어 화학 반응을 촉진한다.

(6) 기질이 효소의 활성 부위에 결합하여 복합체를 이루고 있는 동안 효소의 촉매 작용으로 기질은 생성물로 전환되며, 화학 반응이 끝나면 효소와 생성물이 분리된다. 분리된 효소를 다시 새로운 기질과 결합하여 촉매 작용을 반복한다.

(7) 효소는 화학 반응 동안 소모되거나 변화하지 않으면서 기질과 결합하여 촉매 작용을 반복하기 때문에 생명체에서 효소가 촉매하는 화학 반응은 매우 빠르게 일어난다.

▣ 효소의 특성

(1) 효소는 기질 특이성을 가지고 있어 활성 부위에 잘 들어맞는 입체 구조를 가진 특정 기질하고만 결합하여 반응을 촉매한다.

예) 설탕과 젖당은 모두 이당류의 물질이지만, 소화 효소인 락테이스는 설탕과는 반응하지 않고, 자신의 활성 부위에 잘 들어맞는 입체 구조를 가진 젖당과만 결합하여 젖당을 포도당과 갈락토스로 분해한다.

(2) 기질 특이성을 가지므로 생명체가 가지는 효소의 종류는 기질의 종류만큼 다양하다.

▣ 효소의 구조

(1) 효소 대부분은 단백질이 주성분이며, 그 종류에 따라 단백질로만 구성되어 기능을 수행하는 것도 있지만 비단백질 성분인 보조 인자가 단백질에 결합하여 기능을 수행하는 것도 있다.

(2) 보조 인자가 결합하여 기능을 수행하는 효소의 단백질 부분을 주효소라고 하며, 주효소에 보조 인자가 결합하여 완전한 활성을 가지는 효소를 전효소라고 한다.

(3) 보조 인자의 종류와 기능

– 보조 인자의 종류와 특징: 보조 인자 중에는 주효소에 일시적으로 결합하였다가 반응이 끝나면 분리되어 다른 반응에 참여하는 것도 있지만, 주효소에 강하게 결합하여 분리되지 않는 것도 있다.

◈ 효소의 작용에 영향을 미치는 요인

▣ 온도

(1) 효소가 촉매하는 화학 반응 속도는 효소와 기질이 결합하여 형성되는 효소·기질 복합체의 농도에 비례한다.

(2) 효소가 촉매하는 대부분의 화학 반응에서 온도가 높아질수록 기질은 더 활발하게 움직여 효소의 활성 부위에 빈번하게 충돌한다. 그 결과 효소·기질 복합체가 더 많이 형성되므로 반응 속도가 증가한다.

(3) 반응 속도가 최대가 될 때 온도를 최적 온도라고 한다.

(4) 최적 온도보다 온도가 높아지면 효소의 주성분인 단백질이 열에 의해 입체 구조가 달라지는 변성이 일어나며, 그 결과, 효소·기질 복합체의 생성이 줄어들어 반응 속도는 급격히 감소한다.

▣ pH

(1) 효소가 촉매하는 화학 반응 속도는 pH의 영향을 받으며, 반응 속도가 최대가 될 때의 pH를 최적 pH라고 한다.

(2) 최적 pH를 벗어난 환경에서는 효소의 주성분인 단백질의 입체 구조가 달라지는 변성이 일어나며, 그 결과 효소·기질 복합체의 생성이 줄어들어 반응 속도는 감소한다.

▣ 기질의 농도

(1) 효소의 농도가 일정할 때 기질의 농도가 증가함에 따라 효소·기질 복합체가 더 많이 생성되므로 반응 속도는 증가한다.

(2) 기질의 농도가 증가함에 따라 반응 속도의 증가는 둔화하며, 기질의 농도가 일정 수준을 넘어서면 모든 효소가 기질과 결합하므로 반응 속도는 일정해진다.

▣ 저해제

(1) 효소와 결합하여 효소가 촉매하는 화학 반응의 속도를 감소시키는 물질을 저해제라고 한다.

(2) 저해제의 종류

– 경쟁적 저해제

기질과 유사한 입체 구조로 되어 있어 효소의 활성 부위를 두고 기질과 경쟁적으로 결합한다.

기질 대신 경쟁적 저해제가 효소의 활성 부위에 결합하면 효소·기질 복합체가 형성되지 못하므로 효소의 작용이 저해된다.

기질의 농도가 증가하면 경쟁적 저해제의 저해 효과는 감소한다.

예) 말론산: 석신산 탈수소 효소의 활성 부위에 석신산 대신에 결합하여 효소의 작용을 경쟁적으로 저해한다.

– 비경쟁적 저해제

효소의 활성 부위가 아닌 다른 부위에 결합하여 효소의 구조를 변형시킴으로써 효소의 작용을 저해한다.

기질이 효소의 활성 부위에 결합한다고 해도 감소한 효소의 활성 때문에 반응 속도는 저해제가 작용하지 않았을 때보다 느리다.

활성 부위를 두고 기질과 경쟁하지 않으므로 기질의 농도가 증가해도 비경쟁적 저해제의 저해 효과는 감소하지 않는다.

예) 히루딘: 거머리에서 분비되는 히루딘은 혈액 응고 과정에 관련된 효소의 작용을 비경쟁적으로 저해한다.

(3) 저해제는 해충을 없애거나, 질병을 치료하는 의약품과 항암제 개발 등 다양한 분야에서 유용하게 쓰이고 있다.

(4) 생명체에서 일부 물질대사 과정에서 생성된 최종 산물이 이 물질대사 과정의 초기 단계를 촉매하는 효소에 비경쟁적 저해제처럼 작용하여 물질대사 과정을 조절한다.

02 효소

Enzyme Inhibitor Discovery by Activity-Based Protein Profiling

https://www.annualreviews.org/doi/10.1146/annurev-biochem-060713-035708

Mechanistic enzymology in drug discovery: a fresh perspective

https://www.nature.com/articles/nrd.2017.219

A Structure-Based Drug Discovery Paradigm

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601033/

Computational approaches streamlining drug discovery

https://www.nature.com/articles/s41586-023-05905-z

Small molecules in targeted cancer therapy: advances, challenges, and future perspectives

https://www.nature.com/articles/s41392-021-00572-w

추천도서

효소로 이루어진 세상, 신현재 저자(글), 이채 · 2018년 05월 15일

효소, 폴 엥겔 저자(글) · 최가영 번역, 김영사 · 2023년 05월 08일

유전공학의 이해 3판, 남상욱 , 권혁빈 , 최선심 저자(글), 라이프사이언스 · 2016년 09월 01일

최신 생명공학의 이해 4판, William J. Thieman , Michael A.Palladino 저자(글) · 이진성 , 강대경 , 김근성 , 김태형 , 박현정 , 안예진 , 이동환 , 이효정 , 조경주 , 최호윤 , 한인섭 , 황인욱 번역, 바이오사이언스출판 · 2020년 09월 25일

생명공학기술과 바이오산업, 고려대학교핵심교양 2, 김승욱 저자(글), 고려대학교출판문화원 · 2016년 09월 27일

일반생명공학 및 실험, 이영춘 , 이용석 , 이진우 , 조영수 , 최용락 저자(글), 동아대학교출판부 · 2015년 08월 31일

생명과학, 공학을 만나다, 유영제 저자(글), 나녹 · 2019년 12월 20일

생명공학의 윤리 3, 리처드 셔록 , 존 모레이 저자(글) · 김동광 번역, 나남 · 2016년 11월 15일

세포막과 효소

단백질 효소 경쟁적 비경쟁적 억제자

생명 공학 기술과 인간 생활

https://simagebank.com/wp/599/

철분 부족은 남극해의 먹이 사슬의 핵심인 미생물을 위협합니다.

식물성 플랑크톤 꽃은 철분이 풍부한 물의 융기에 달려 있습니다.

 

Iron shortage threatens microbes key to food chain in Southern Ocean

Phytoplankton blooms depend on the upwelling of iron-rich water

23 FEB 20232:00 PMBYWARREN CORNWALL

https://www.science.org/content/article/iron-shortage-threatens-microbes-key-food-chain-southern-ocean

의 간단 번역입니다.

매년 봄 남극 대륙의 얼음 해안에서 우주에서 볼 수 있을 정도로 큰 생명의 폭발이 펼쳐집니다. 철분이 풍부한 물이 아래에서 솟아오르면 남극해의 표면은 밝은 녹색 식물성 플랑크톤의 환각 구름으로 소용돌이치며, 단세포 생물은 대기에서 탄소를 빨아들이고 크릴을 유지하여 먹이 사슬의 기초를 형성하며, 크릴은 차례로 물고기, 고래, 펭귄의 주요 먹이 공급원입니다.

 

이제 한 과학자 그룹은 지난 25년 동안 생태계와 기후에서 중요한 역할을 하는 이 계절적 꽃이 위험에 처할 수 있다고 말합니다. 남극해의 식물성 플랑크톤은 광합성 기계의 빌딩 블록인 철이 점점 더 굶주리고 있으며 생산성이 감소할 수 있는 징후가 있습니다. 오늘 Science 지에 발표된 이 발견은 많은 기후 모델이 다가오는 세기에 대해 예측한 생산성의 급증에 직접 반대하는 놀라운 일입니다.

 

변화의 명백한 속도는 “정말 놀랍다”고 채플 힐에 있는 노스 캐롤라이나 대학의 생물 해양학자인 Adrian Marchetti는 식물성 플랑크톤을 연구하지만, 연구에 직접 참여하지는 않았다고 말합니다. 식물성 플랑크톤의 큰 감소는 “지구 탄소 순환에 실제로 영향을 미칠 수 있다”라고, 해양 탄소를 연구하는 워싱턴 대학교 시애틀 해양학자 앨리슨 그레이는 덧붙인다.

 

 

해양 철분 수준은 남극해에서 식물성 플랑크톤 생산성을 제한하는 중요한 요소로 알려졌지만 연구하기 어려운 것으로 악명이 높습니다. 로봇 센서나 연구선은 일상적으로 영양소를 찾지 않습니다. 그래서 과학자들은 최근에 식물성 플랑크톤이 철분 부족에 대처하고 있다는 신호를 찾아 그 수준을 추론하기 시작했습니다.

 

새로운 연구는 식물성 플랑크톤이 방출하는 빛을 비광화학 담금질이라고 불리는 생리적 과정의 징후로 분석했는데, 여기서 식물성 플랑크톤은 열을 방출하여 과도한 햇빛을 처리합니다. 담금질은 철분 스트레스의 지표인데, 영양소가 부족한 식물성 플랑크톤은 빛에 더 취약하게 만드는 방식으로 생리학을 변경하기 때문입니다. 194 년부터 시작된 연구 선박의 194회 여행과 1996년부터 표류하는 47개의 센서를 실은 부유물의 데이터에서 연구원들은 빛 노출의 변화를 조정할 때 담금질이 연간 거의 5% 증가한 것을 발견했습니다. 이 추세는 지난 2년 동안 식물성 플랑크톤이 충분한 철분을 얻기 위해 점점 더 고군분투하고 있음을 시사한다고 남아프리카 정부의 남극해 탄소 및 기후 관측소의 생지화학자이자 Science 논문의 수석 저자 인 Tommy Ryan-Keogh는 말합니다.

 

Ryan-Keogh와 그의 공동 연구자들은 플랑크톤 꽃의 위성 이미지와 바다 부유물의 측정을 사용하여 1998 년부터 변화를 추적하여 식물성 플랑크톤 생산성도 조사했습니다. 그들은 데이터를 순 식물성 플랑크톤 생산성의 추정치로 변환하기 위해 모델에 의존하여 남극해에서 작지만, 통계적으로 유의미한 생산성 감소를 발견했습니다.

 

쇠퇴가 현실이라고 해도 철이 역할을 하고 있는지는 확실하지 않습니다. 수십 년 동안 남극해의 철 역학을 연구해 온 태즈메이니아 대학의 생지화학자인 필립 보이드는 다른 잠재적 요인을 지적합니다. 예를 들어, 해양 동물은 식물성 플랑크톤을 더 많이 먹을 수 있습니다. “철 스트레스와 순 1차 생산을 직접 연결하는 것은 긴 활입니다.”라고 그는 말합니다.

 

식물성 플랑크톤이 철분 부족에 직면하는 이유도 명확하지 않습니다. 현재의 기후와 해양 모델은 기후 변화에 따라 남극해의 바람이 남쪽으로 이동하여 더 많은 융기를 일으켜 바다 깊은 곳에서 표면으로 철을 가져오고 생산성의 폭발을 촉진하리라 예측합니다. Ryan-Keogh는 식물성 플랑크톤에 철분이 부족한 세 가지 가능한 이유를 제안합니다 : 이산화탄소 수준 상승으로 인한 해양 산성화는 영양소 흡수를 더 어렵게 만들 수 있으며, 해수 온도 상승은 신진대사를 가속하고 철분 수요를 증가시킬 수 있으며, 해양 혼합의 다른 층이 더 깊은 곳의 움직임을 제한할 방법의 변화, 철분이 풍부한 물이 표면을 향합니다. “이를 테스트하려면 많은 실험실 작업이 필요합니다.”라고 Ryan-Keogh는 말합니다.

 

무슨 일이 일어나고 있는지 분리하는 것은 남극해의 미래 생태계 변화를 이해하는 것뿐만 아니라 지구 기후의 운명을 예측하는 데에도 중요합니다. 남극해는 중요한 탄소 흡수원입니다. 바다에 용해되는 모든 탄소 오염의 절반이 바다에서 발생합니다. 그 용해 된 탄소 중 일부는 식물성 플랑크톤에 의해 흡수되어 생물 또는 생물을 먹는 유기체가 죽어 바닥으로 가라앉을 때 저장됩니다.

 

이 연구에 참여한 리버풀 대학의 해양학자 알레산드로 타글리아부에(Alessandro Tagliabue)는 철 기아 추세가 일시적일 수 있다고 말합니다. 그러나 미래의 풍요를 예측하는 모델이 남극해와 그곳에 사는 유기체에 대해 잘못 표현하고 있을 수도 있습니다. “우리는 모델이 현재의 추세를 재현하지 않는 이유를 알아야 합니다.”라고 해양 생지화학적 과정 모델링을 전문으로 하는 Tagliabue는 말합니다.

 

널리 사용되는 여러 기후 모델을 연구한 캘리포니아 대학교 어바인 (University of California, Irvine)의 해양학자 키스 무어 (Keith Moore)는 이 추세가 오래 가지 못할 것이라고 확신한다. 그는 이 논문이 현재 식물성 플랑크톤의 철분 결핍이 증가하고 있다는 설득력 있는 사례를 제시한다고 말하지만, 무어는 모델이 예측한 대로 바람이 결국 남쪽으로 이동하고 식물성 플랑크톤 꽃이 그 어느 때보다 무성해질 것으로 예상합니다. “지금 일어나고 있는 일은 그 모델들이 알아차리기에는 너무 미묘할 수 있습니다.”라고 그는 말합니다.

doi: 10.1126/science.adh3116