카테고리 보관물: 물리

고온 초전도체의 전망

비용 장벽을 극복하면 고온 초전도체가 보편화될 수 있습니다.

초전도체는 기본적으로 제로 저항으로 전기를 전도하므로 현재의 전력 전송, 변환 및 사용에서 많은 전력 손실을 방지합니다. 강력한 전자기장은 지금까지 저온 초전도체(LTS) Nb47Ti로 구성된 자기 공명 영상(MRI) 전자석으로 제한된 광범위한 상업적 초전도성을 가진 초전도체의 주요 응용 분야였습니다. LTS의 광범위한 적용은 액체 헬륨(4.2K 이하)으로 냉각해야 하는 필요성으로 인해 방해를 받았습니다. 고온 초전도체(HTS)( 1)는 액체 질소 온도(65~80K)에서 작동할 수 있어 LTS의 제약을 벗어날 수 있는 유비쿼터스 애플리케이션을 약속했습니다. 2050년까지 탄소 없는 경제를 위한 국제 에너지 기구 로드맵을 달성하는 것은 핵융합으로 생성된 전기를 사용함으로써 크게 촉진될 것입니다. HTS는 프로토타입 핵융합 원자로( 2 )에 사용되어 지금까지 HTS 기술의 상업적 개발을 가로막았던 비용 장벽을 극복할 수 있는 기회를 만들었습니다.
1987년 93K의 고온 초전도에 대한 예상치 못한 보고( 1 ) 이후 HTS가 전자석에 대한 고전적인 초전도 응용을 훨씬 넘어서 전력 산업( 3 )에 혁명을 일으킬 수 있다는 아이디어가 추구되었습니다. 많은 기술적 성공에도 불구하고( 4 ) HTS의 전기 산업 응용 분야는 거의 없는데, 그 주된 이유는 HTS 재료의 높은 비용으로 인해 구리 및 철 전기 인프라를 경제적으로 대체할 수 없기 때문입니다. 따라서 지난 10년 동안의 HTS 연구는 과학적 으로 흥미롭지만 제한된 시장인 “고전적인” LTS 전도체로는 불가능한 초고장 전자석을 만드는 것으로 되돌아갔습니다.). 그러나 HTS는 2050년 제로 탄소 목표에 기여하는 수단으로 경제적인 소형 핵융합로를 가능하게 할 수 있으며 핵융합의 개발은 상승적으로 HTS에 대한 수요를 창출하여 HTS 비용 절감을 가져올 새로운 생산 능력을 촉진합니다. 이것은 특히 전기 기술에서 구리와 철을 대체하기 위해 HTS의 경제성을 변화시킬 수 있습니다.
콤팩트한 토카막 핵융합 원자로 개발에 대한 대규모 투자( 6 , 7 )는 최고 성능의 HTS, REBa 2 Cu 3 O 7-δ (REBCO; RE, rare- 접지 요소), 20K 및 20T( 9 )에서 작동하는 코팅 도체(CC) 형태( 8 )). 소형 핵융합 토카막에서 HTS CC의 D자형 코일 세트는 플라즈마를 가두는 토로이달 자기장을 생성합니다(그림 참조). 이 시제품은 270km의 REBCO를 사용했으며, 이는 지금까지 만들어진 모든 고자기장 자석에 사용된 모든 REBCO CC 양의 몇 배입니다. 이 성과는 CC 생산의 대대적인 확장을 필요로 했으며 이제 REBCO CC를 핵융합뿐만 아니라 전기 유틸리티 및 액체 수소 경제에 대한 광범위한 적용에 적합한 가격으로 톤 단위로 제공할 수 있는 기회를 제공합니다.

토카막 핵융합로의 고온 초전도체
소형 토카막 핵융합 원자로와 같은 핵융합 발전의 개발은 고온 초전도체(HTS) 코팅 전도체의 성장과 상용화를 주도하고 있습니다.

역사적으로 고에너지 물리학 커뮤니티는 새로운 초전도체에 대한 지배적인 수요를 제공했으며 실제로 초고에너지 입자 가속기의 필수 구성 요소로서 LTS와 HTS 모두에 대한 수요를 주도하고 있습니다. 20T, 20K 토로이달 필드 융합 자석( 9 )의 시연은 CERN( 10 ) 의 미래 원형 충돌기를 위한 HTS 지원 쌍극자 자석의 설계 및 작동에 대한 강력한 논거를 만들었습니다 . 15~25K에서 작동하는 HTS는 대형 강입자 충돌기에서 LTS 자석을 냉각하기 위한 오늘날의 값비싼 솔루션인 1.8K의 현재 초유체 헬륨에 비해 막대한 극저온 절감 효과를 제공할 수 있습니다.
65~80K의 액체 질소에서도 헬륨을 사용하지 않고 작동할 수 있다는 전망은 원래 HTS, 특히 REBCO의 광범위한 응용 분야에 대한 기대를 불러일으켰습니다. 그러나 HTS를 적용하려는 시도는 극저온을 절약함으로써 초전도체를 유용하게 만드는 것은 높은 전이 온도(또는 임계 온도 T c )뿐만 아니라 더 중요한 것은 높은 전류 밀도(J c ) 를 강한 자기장. 높은 Jc 는 초전도체 내부의 양자화된 와류가 다양한 구조적 결함에 의해 움직이지 않도록 “고정”되는 정도에 따라 달라집니다. 높은 J c 달성구조적 이방성으로 인해 발생하고 강력한 와류 피닝을 어렵게 만드는 REBCO의 초전도 특성의 현저한 이방성을 처음으로 이해해야 하는 20년 이상의 집중적인 연구 활동이었습니다( 11 ) . REBCO 화합물이 박막으로 성장할 수 있는 능력은 고밀도의 절연 나노스케일 RE 2 O 3 및 BaZrO 3 와 같은 페로브스카이트 화합물을 통합하여 액체 질소 온도에서도 높은 J c 를 가능 하게 하는 매우 강력한 와류 피닝을 가능하게 했습니다. ( 12 ).
HTS 적용을 가로막는 두 번째 독립적인 문제: 다결정 전도체 내의 거의 모든 입자 사이에서 발생하는 초전도 특성을 국지적으로 저하시키는 장애에 대한 큰 민감성(입계, GB)(13 ) . 두 가지 주요 LTS 재료인 Nb47Ti와 Nb3Sn은 높은 캐리어 밀도, 등방성, s파 초전도체인 반면 , cuprate HTS는 현저하게 이방성 d파 초전도체로 GB 캐리어 밀도와 초전도 특성은 다음을 제외하고 모두 강하게 저하됩니다. 매우 낮은 각도의 GB(인접한 두 입자 사이의 결정학적 방향의 차이가 매우 작은 경우). 이로 인해 곡물 간 연결성이 크게 저하되고 J c다결정 재료( 13 ). 따라서 HTS 도체가 등장하는 데는 1km도 훨씬 안 되는 길이에서도 15년 이상이 걸렸다. 대조적으로, LTS 컨덕터는 일반적으로 10km가 훨씬 넘는 단일 길이로 만들어집니다.
오늘날 사용 가능한 세 가지 상용 HTS 재료(REBCO 및 비스무트 스트론튬 칼슘 구리 산화물(BSCCO) 화합물 Bi-2223 및 Bi-2212) 각각에 대해 높은 Jc로의 경로 는 장거리 과류 수송에 장애물. REBCO의 경우, 완전히 새로운, 주로 증착 박막 생산 경로가 필요했습니다( 12 ). 특히, Bi-2212 및 Bi-2223은 기존의 와이어 제조 경로로 만들 수 있지만 질감이 좋지 않아 결과적으로 Jc가 낮아지는 대가가 있습니다 .. 대조적으로, 박막 CC 제조 공정의 산업화는 약한 와류 피닝 및 GB 초전류 차단 문제를 모두 해결하여 이제 경제적인 HTS의 대량 생산을 가능하게 합니다.

현재 전 세계적으로 500~1000m 길이에 가까운 단결정 질감의 REBCO CC가 만들어지고 있다. 지배적인 생산 경로는 IBAD(이온 빔 보조 증착)를 사용하여 10~50nm 두께의 입방체 질감 MgO 템플릿을 Hastelloy-C276과 같은 30~100µm 두께의 질감이 없는 강한 금속 기질 위에 성장시킵니다. . 약 100nm 두께의 일부 중간 산화물 층은 MgO를 1~3µm 두께의 REBCO 층에 격자 일치시킬 수 있게 합니다. 이 층은 1~2µm의 스퍼터링된 은으로 보호되고 마지막으로 더 두꺼운 5~50µm 두께의 은으로 보호됩니다. REBCO에서 전기적 안정성과 초전도 손실을 방지하기 위해 일반적으로 전기 도금되는 µm 구리 층. 공정의 대부분 또는 전부는 자본 비용이 높고 처리량이 상대적으로 느린 여러 개의 물리적 기상 증착 챔버를 필요로 합니다. CC 제작을 복잡하고 비싸게 만듭니다. 핵융합 발전 개발을 위한 HTS에 대한 수요 증가는 REBCO CC 제조를 잠재적으로 막대한 비용 절감과 함께 완전한 산업 운영으로 이끄는 혁신적인 영향을 미칠 수 있습니다.
초전도체에 일반적으로 사용되는 비용 메트릭인 킬로암페어미터당 달러($/kA-m)는 자기장에서 77K에서 1000A의 전류를 전송하는 데 필요한 도체의 미터당 비용을 정의합니다(즉, 자기장이 가해지지 않음); 또는 더 일반적으로 사용자가 원하는 온도 및 자기장에서. HTS의 현재 볼륨 가격 범위는 $150에서 $200/kA-m입니다. 초전도 응용 프로그램의 상업적 실행 가능성에 대한 많은 분석은 $50/kA-m의 도체 비용이 전력 사용을 위한 광범위한 응용 프로그램의 티핑 포인트임을 보여줍니다. 장기적 전망은 HTS 비용이 매우 큰 규모로 생산될 때 $10/kA-m 이하로 예상합니다( 14 ).
제조 가능한 모든 초전도체 중에서 가장 “강력한” Nb47Ti(사용 가능한 작동 영역 및 온도 공간의 의미에서)가 상업적 톤수 규모에 도달한 유일한 것입니다. 값비싼 Nb에도 불구하고 Nb47Ti로 만든 MRI 전자석은 영구 전류 모드에서 작동하고 작은 극저온 냉각기만 필요하기 때문에 Nb47Ti는 MRI의 대량 시장 응용 프로그램의 경제적인 원동력이 되었습니다. 컴팩트 핵융합 반응로는 REBCO CC로만 달성할 수 있는 특성이 필요하기 때문에 현재의 높은 HTS 비용을 견딜 수 없는 많은 새로운 시장에 HTS의 뚜렷한 이점을 제공할 수 있는 기회가 제공됩니다.
프로토타입 소형 핵융합로( 6 , 7 )는 HTS 공급을 지난 3년 동안 연간 수백에서 수천 킬로미터로 10배 증가시켜야 했습니다. 이 수요는 HTS 제조를 견고하고 확장 가능하게 만든 최근의 발전을 가능하게 하여( 8 ) 필요한 생산량을 연간 수 톤 수준으로 증가시킬 수 있습니다. 이 생산 규모의 엄청난 확장은 곧 도체 비용을 ~$100/kA-m로 줄일 수 있습니다. HTS 사용 비용도 초전도체 Jc와 생산 수율에 크게 의존 합니다 . 오늘날 최고의 실험실 샘플은 Jc 가 상업용 전도체보다 2배 이상( 15), 따라서 추가적인 산업 개선 경로를 제공합니다. 생산 기술이 성숙함에 따라 제조 수율도 증가하여 비용이 더욱 절감됩니다. 이를 통해 HTS CC는 전기 유틸리티 및 풍력 터빈에서 구리와 철을 대체하는 응용 분야에서 경쟁력을 갖추게 될 것이며 아마도 수소 냉각 초전도 모터로 전기 항공기를 가능하게 할 수도 있습니다.
전반적으로, HTS 재료와 그 산업 응용 분야에 대한 현재의 전망은 역사적입니다. 35년 전 MRI 전자석용 Nb47Ti 생산에 일어났던 것처럼 REBCO 초전도체 사용이 확대될 기회가 있기 때문입니다. 소형 핵융합 발전(아직 프로토타입 단계에 있음)의 개발은 기하급수적인 연간 생산량 증가를 가져온 직접적인 자극제입니다. 응용 초전도체 커뮤니티는 현재의 구리, 철 및 LTS 사용에 비해 오늘날의 REBCO CC 가격으로 아직 경제적이지 않은 다른 전기 기술 응용 분야의 추가 수요와 가격 인하의 선순환을 예상하고 있습니다. HTS 재료 및 응용 프로그램의 지속 가능한 미래 시장은 에너지 생산, 유통, 그리고 사용; 약; 운송; 그리고 연구.

The prospects of high-temperature superconductors
Overcoming cost barriers could make high-temperature superconductors pervasive

R EFERENCES AND NOTES1. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).

2. P. Ball, Nature599, 362 (2021).

3. D. Larbalestier, A. Gurevich, D. M. Feldmann, A. Polyanskii, Nature414, 368 (2001).

4. R. Scanlan, A. P. Malozemoff, D. C. Larbalestier, Proc. IEEE92, 1639 (2004).

5. S. Hahn et al., Nature570, 496 (2019).

6. B. N. Sorbom et al., Fusion Eng. Des. 100, 378 (2015).

7. A. Sykes et al., Nucl. Fusion58, 016039 (2018).

8. A. Molodyk et al., Sci. Rep. 11, 2084 (2021).

9. https://cfs.energy/news-and-media/cfs-commercial-fusion-power-with-hts-magnet

10. P. Védrine et al., in European Strategy for ParticlePhysics—Accelerator R&D Roadmap, N. Mounet, Ed. (CERN Yellow Reports: Monographs, CERN-2022-001), chap. 2, pp. 9–59.

11. D. J. Bishop, Nature365, 394 (1993).

12. J. L. MacManus-Driscoll, S. Wimbush, Nat. Rev. Mater. 6, 587 (2021).

13. H. Hilgenkamp, J. Mannhart, Rev. Mod. Phys.74, 485 (2002).

14. V. Matias, R. H. Hammond, Phys. Procedia36, 1440 (2012).

15. G. Majkic et al., Supercond. Sci. Technol. 33, 07 LT 0 3 (2020)

SCIENCE
22 Jun 2023
Vol 380, Issue 6651
pp. 1220-1222
DOI: 10.1126/science.abq4137

모두를 위한 MRI

휴대용 저자장 스캐너는 부유한 국가와 가난한 국가의 의료 영상에 혁명을 일으킬 수 있습니다.

MRI FOR ALL

Portable low-field scanners could revolutionize medical imaging in nations rich and poor—if doctors embrace them

23 FEB 2023BYADRIAN CHO

https://www.science.org/content/article/mri-all-cheap-portable-scanners-aim-revolutionize-medical-imaging

 

은발의 충격을 받은 70대 남성인 이 환자는 예일 뉴헤이븐 병원의 신경 집중 치료실(신경 ICU)에 누워 있습니다. 그를 보면 며칠 전에 뇌하수체에서 종양이 제거되었다는 것을 결코 알지 못할 것입니다. 수술은 표준과 같이 외과의가 코를 통해 종양에 도달했기 때문에 흔적을 남기지 않았습니다. 그는 테스트중인 새롭고 잠재적으로 혁신적인 장치로 진행 상황을 확인하기 위해 온 한 쌍의 연구원과 유쾌하게 이야기합니다.

 

원통형 기계는 가슴 높이에 서 있으며 스타 워즈 로봇 인 R2D2의 우울한 형이 될 수 있습니다. 연구원 중 한 명이 630kg의 자체 추진 스캐너를 침대 머리까지 조심스럽게 안내하고 조이스틱으로 조종합니다. 연구원들은 침대 시트로 남자를 들어 올려 하이퍼파인이라는 회사에서 만든 휴대용 자기 공명 영상(MRI) 스캐너인 급습(Swoop)에 머리를 편하게 할 수 있도록 도와줍니다.

 

“귀마개를 원하십니까?”두 번째 연구원 인 Vineetha Yadlapalli가 묻습니다.

“일반 MRI만큼 시끄럽습니까?”

“전혀.”

“그럼 필요 없을 것 같아요.”

 

Yadlapalli는 환자의 다리를 받쳐서 등의 부담을 덜어준 후 iPad에서 몇 가지 지침을 탭하여 기계를 작동시킵니다. 기계가 낮은 으르렁 거리는 소리를 낸 다음 신호음과 딸깍 소리를 내며 계속합니다. 몇 분 안에 환자의 뇌 이미지가 Yadlapalli의 태블릿에 나타납니다.

 

30분 동안 남자는 조용히 누워 손을 배에 접었습니다. 그는 구식 헤어 드라이어에서 머리를 할 수 있습니다. 작은 의미에서 그는 이전에 한 번도 가본 적이 없는 곳에서 MRI를 찍는 데 도움을 주는 선구자입니다.

 

많은 경우 MRI는 의료 영상의 황금 표준을 설정합니다. 최초의 유용한 MRI 이미지는 1970년대 후반에 나타났습니다. 10년 이내에 상업용 스캐너가 의학을 통해 퍼져 의사는 뼈뿐만 아니라 연한 조직을 이미지화할 수 있게 되었습니다. 의사가 뇌졸중이 있거나 종양이 생기거나 무릎 연골이 찢어진 것으로 의심되면 MRI를 처방할 것입니다.

 

운이 좋으면 하나를 얻을 수 있습니다. MRI 스캐너는 자기장을 사용하여 살아있는 조직의 원자핵, 특히 수소 원자의 중심에 있는 양성자를 빙글빙글 돌려 전파를 방출합니다. 이 필드를 생성하기 위해 표준 스캐너는 기계 비용을 1.5백만 달러 이상으로 끌어올리는 크고 강력한 초전도 전자석을 사용하여 MRI 가격을 전 세계 인구의 70%가 사용할 수 없는 수준으로 책정합니다. 미국에서도 MRI를 받으려면 며칠을 기다려야 하고 한밤중에 멀리 떨어진 병원까지 운전해야 할 수도 있습니다. 환자는 스캐너로 와야 하며 그 반대가 되어서는 안 됩니다.

 

수년 동안 일부 연구자들은 책상 장난감에서 흔히 볼 수 있는 합금으로 만들어진 훨씬 더 작은 영구 자석을 사용하는 스캐너를 만들기 위해 노력해 왔습니다. 그들은 표준 MRI 자석보다 약 1/25 강한 자기장을 생성하는데, 한때는 너무 약해서 사용 가능한 이미지를 수집할 수 없었습니다. 그러나 더 나은 전자 장치, 보다 효율적인 자료수집 및 새로운 신호 처리 기술 덕분에 여러 그룹이 표준 MRI보다 해상도가 낮지만 낮은 필드에서 뇌를 이미지화했습니다. 그 결과 환자의 침대로 굴러갈 수 있을 만큼 작고 전 세계에서 MRI에 액세스할 수 있을 만큼 저렴할 수 있는 스캐너가 탄생했습니다.

 

Low-field MRI brain scan. The image is grainy, but shows the structure of the brain and a lighter-colored patch on the left side.

Traditional MRI scan of the same brain. The image is clearer, and the same light-colored patch is visible in more detail.

저필드 기계(첫 번째 이미지)의 뇌 스캔 해상도는 기존 MRI(두 번째 이미지)보다 거칠지만 두 이미지 모두 출혈을 분명히 드러냅니다. 예일 의과 대학

 

기계는 기술적 승리를 표시합니다. 하이퍼파인 스캐너를 테스트하고 있는 미국 국립표준기술연구소(National Institute of Standards and Technology)의 생의학 엔지니어인 캐서린 키넌(Kathryn Keenan)은 “모든 사람이 이 스캐너가 작동한다는 사실에 깊은 인상을 받았다”고 말합니다. 어떤 사람들은 스캐너가 의료 영상도 변화시킬 수 있다고 말합니다. “우리는 잠재적으로 완전히 새로운 분야를 열고 있다”라고 예일 의과 대학의 신경 학자인 케빈 셰스 (Kevin Sheth)는 Swoop과 광범위하게 일했지만, Hyperfine에 재정적인 관심은 없다. “‘이런 일이 일어날 것인가’의 문제가 아닙니다. 그것은 일이 될 것입니다.”

 

2020년 8월, Swoop은 뇌 이미징을 위해 미국 식품의약국(FDA) 승인을 획득한 최초의 저자장 스캐너가 되었으며 의사들은 예일 뉴헤이븐 및 기타 지역에서 임상 연구를 진행하고 있습니다. 다른 장치는 뒤에 있습니다. 그러나 물리학자이자 컨설팅 회사인 NeuvoMR, LLC의 설립자인 Andrew McDowell은 해상도가 낮은 저자장 스캐너 시장이 있는지는 확실하지 않다고 경고합니다. “진정한 도전은 의사들이 그것을 사용하기 시작하도록 설득하는 것입니다.”라고 그는 말합니다. “정당한 이유로 그들은 매우 보수적이기 때문에 매우 어렵습니다.”

 

MRI 스캐너는 카메라처럼 작동하지 않습니다. 실제로 살아있는 조직의 양성자에 맞추는 라디오입니다. 작은 나침반 바늘처럼 각 양성자는 자성이며 일반적으로 양성자는 모든 방향으로 무작위로 가리 킵니다 (아래 그래픽 참조). 그러나 외부 자기장이 이들을 정렬할 수 있습니다. 이 시점에서 적절한 주파수와 지속 시간의 전파 펄스가 90° 기울일 수 있습니다. 그런 다음 정렬된 양성자는 자이로스코프처럼 빙글빙글 돌면서 자체 무선 신호를 방출하며, 그 주파수는 자기장의 강도에 따라 증가합니다.

 

그 덧없는 모노톤 라디오 윙윙거리는 소리는 거의 드러내지 않습니다. 이미지를 만들려면 스캐너가 신체의 다른 지점에서 오는 파도를 구별해야 합니다. 이를 위해 자기장을 조각하여 다른 위치의 양성자가 다른 주파수와 동기화 상태에서 노래하도록합니다. 스캐너는 또한 한 유형의 조직을 다른 조직과 구별해야 하며, 이는 무선 신호가 다른 조직에서 다른 속도로 퇴색한다는 사실을 이용하여 수행합니다.

 

신호가 사라지는 한 가지 이유는 양성자가 자체 자기장을 통해 서로 정렬되지 않기 때문입니다. 이것이 일어나는 속도는 예를 들어 지방 뇌 물질과 물 뇌척수액 사이에서 다릅니다. 속도를 측정하기 위해 스캐너는 펄스 쌍을 적용합니다. 첫 번째 펄스는 빙글빙글 도는 양성자의 방향이 펼쳐지면서 희미해지는 신호를 생성합니다. 두 번째는 그 진화의 많은 부분을 뒤집어 신호의 반향을 이끌어냅니다. 그러나 양성자-양성자 상호 작용은 그 에코를 음소거합니다. 따라서 스캐너는 두 펄스 사이의 지연이 증가함에 따라 에코가 어떻게 줄어들는지 추적하여 속도를 측정할 수 있습니다.

 

한 쌍의 펄스를 적용하는 동안 스캐너는 뇌의 다른 지점에서 오는 에코를 동시에 정렬해야 합니다. 이를 위해서는 중요한 순간에 적용된 자기장 구배에 의존합니다. 예를 들어, 턱에서 정수리까지 에코 중에 적용된 그라디언트는 머리를 통해 다른 측면 조각의 양성자를 다른 주파수로 방사합니다. 펄스 사이와 머리를 가로질러 적용된 그라디언트는 빙글빙글 돌기에서 앞이나 뒤에 수직 슬라이스로 양성자를 설정하며, 일부 슬라이스의 에코가 서로를 강화하고 다른 슬라이스를 취소하는 “위상”차이 입니다. 그래디언트를 변경하여 스캐너는 각 슬라이스에서 에코의 강도를 추론할 수 있습니다.

 

많은 반복을 통해 스캐너는 강도가 지연, 주파수 및 위상에 따라 변하는 과다한 에코를 수집합니다. 표준 수학적 알고리즘은 이를 디코딩하여 양성자 – 양성자 상호 작용이 뇌 전체에서 어떻게 변하는지 지도를 생성하여 한 가지 유형의 MRI 이미지를 형성합니다. 다른 펄스 시퀀스는 유체 흐름을 추적할 수 있는 양성자 확산 속도와 같은 다른 조직 특이적 프로세스를 조사합니다.

이 모든 맥동은 MRI 스캔에 시간이 걸리는 이유와 MRI 기계가 짹짹 울리고, 딸깍 소리를 내고, 윙윙 거리는 이유를 설명합니다. 이러한 소리는 기계적 응력이 자기 구배를 생성하는 전류 전달 코일을 덜거덕거리면서 나타납니다. 기술자는 그 소리만으로 기계가 어떤 종류의 스캔을 하고 있는지 알 수 있다고 Yadlapalli는 말합니다.

 

더 강한 필드는 양성자를 더 철저히 편광하고 더 큰 신호를 생성함으로써 이 모든 것을 더 쉽게 만듭니다. 표준 스캐너의 자석은 지구 자기장의 30,000배에 달하는 1.5 테슬라의 자기장을 생성하며 일부는 3 또는 7테슬라에 이릅니다. 그런데도 1.5 테슬라 필드를 가리키는 양성자는 반대 방향을 가리키는 양성자보다 0.001 % 만 많습니다. 전계 강도를 25배 줄이면 분극도 함께 떨어집니다. 신호 대 잡음비는 거의 300배까지 훨씬 더 급락합니다.

 

원칙적으로, 저자장 스캐너는 전파 천문학자들이 몇 시간 또는 며칠 동안 별에 대한 요리를 훈련시켜 소음으로부터 약한 신호를 가려내는 것처럼 장기간에 걸쳐 자료를 수집하여 소음으로부터 신호를 유도할 수 있습니다. 그 방침은 그렇게 오래 가만히 있을 수 있는 인간에게는 작동하지 않을 것입니다. 따라서 저자장 MRI를 개발할 때 연구원들은 데이터를 훨씬 빠르게 추출할 방법을 찾아야 했습니다.

 

한 가지 핵심 요소는 더 나은 하드웨어라고 독일 파라과이 대학의 신경 엔지니어 인 Joshua Harper는 말합니다. “우리는 이제 정말 빠르고 저렴한 전자 제품을 가지고 있습니다.”라고 그는 말합니다. “그것이 정말로 작동하는 이유입니다.” 그런데도 병실에서 낮은 필드 MRI를 수행하는 것은 까다롭습니다. 다른 기계의 금속과 벽조차도 필드를 왜곡시킬 수 있으며 다른 장치의 정전기는 무선 신호를 방해할 수 있습니다. 따라서 스캐너는 대책을 사용합니다. 예를 들어, Hyperfine의 Swoop은 노이즈 캔슬링 헤드폰이 소리를 차단하는 방식과 유사하게 안테나를 사용하여 라디오 노이즈를 측정하고 취소합니다.

 

새로운 스캐너는 또한 더 빠르게 실행하기 위해 하단 필드의 측면을 유리하게 전환합니다. 양성자를 조작하려면 고자장 스캐너가 더 높은 주파수, 더 높은 에너지 전파를 사용해야 하므로 환자를 가열하기 시작하기 전에 너무 빨리 맥박할 수 있습니다. 이러한 속도 제한에서 벗어나 저자장 스캐너는 더 빠르게 펄스하고 더 효율적인 펄스 시퀀스를 사용할 수 있다고 Hyperfine을 공동 설립한 물리학자인 매사추세츠 종합 병원의 Matthew Rosen은 말합니다. “우리는 당신이 높은 필드에서 결코 할 수 없었던 일을 매우 빠르게 심문할 수 있습니다.”

 

그런데도 표준 이미지 재구성을 위해 충분히 빠르게 자료를 수집하는 것은 여전히 어려운 과제입니다. 한 가지 해결책은 인공 지능을 포함한 새로운 신호 처리 기술을 사용하는 것입니다. 하이퍼파인 엔지니어는 일련의 훈련 이미지를 사용하여 신경망이라는 프로그램을 가르쳐 상대적으로 희박한 데이터에서 뇌 이미지를 구성한다고 하이퍼파인의 최고 의료 책임자 겸 최고 전략 책임자인 칸 시디키(Khan Siddiqui)는 말합니다. “그것이 우리의 비밀 소스가 들어오는 곳입니다.”

 

표준 스캔과 비교할 때 낮은 필드 이미지는 더 흐릿하게 보입니다. 그런데도 물리학자들은 그 아름다움을 봅니다. “이 놀라운 물리학 성공 사례입니다.”라고 Rosen은 말합니다. “우리 뾰족한 머리 물리학자들이 아무도 신경 쓰지 않는 일을 하는 것이 아닙니다.” 이 기술은 현장의 잊혀진 구석에서 고군분투하는 사람들을 옹호한다고 McDowell은 말합니다. “영광이 11테슬라 기계를 만드는 데 있을 때 누가 제정신으로 65밀리 테슬라 기계를 만들겠습니까?”

 

HYPERFINE은 급습 스캐너가 꽤 영광스러운 출발을 하고 있다고 말합니다. 대부분 미국에서 100대 이상의 기계를 개당 약 $250,000에 판매했습니다. 목표는 고자장 스캐너를 대체하는 것이 아니라 MRI 사용 방법을 확장하는 것이라고 Siddiqui는 말합니다. “우리의 휴대용 스캐너는 MRI를 시간과 거리 모두에서 환자에게 더 가깝게 제공합니다.” 하이퍼파인은 신경 중환자실에서 이를 사용하여 너무 아프거나 불안정하여 기존 MRI 또는 일종의 3D 엑스레이를 생성하는 CT 기계로 이동할 수 없는 환자를 신속하게 평가할 계획입니다.

 

Swoop의 자석은 두 개의 디스크로 구성되며 64밀리 테슬라의 필드를 생성합니다. 스캔은 표준 스캔과 크게 다릅니다. 기존 스캐너에서는 자동 테이블이 원통형 자석으로 몸을 미끄러지듯 밀어 넣습니다. Swoop을 사용하면 유능한 환자가 자동차 범퍼 아래에서 꿈틀거리는 것처럼 자석에 뛰어들 수 있습니다. 안테나가 들어 있는 헬멧 같은 머리 부분은 코에 닿을 정도로 머리를 꼭 껴안고 있지만 팔과 다리는 자유롭습니다. 기계의 짹짹 울음은 부드럽고 진정됩니다.

 

2019년 말과 2020년 초에 코로나바이러스 전염병이 발생했을 때 Sheth와 동료들은 COVID-19에 걸린 20명을 포함하여 50명의 ICU 환자를 스캔하여 Swoop의 약속을 테스트했습니다. 많은 사람이 인공호흡기를 착용하고 진정제를 투여받았기 때문에 “우리는 그들의 신경 학적 상태가 무엇인지 전혀 몰랐고 사용 가능한 이미징 방식으로 살펴볼 방법이 없었습니다”라고 Sheth는 회상합니다. “그리고 이것은 우리에게 침대 옆에서 그렇게 할 방법을 제공했습니다.” 스캔 결과 8명의 COVID-19 환자를 포함하여 37건의 뇌 외상이 밝혀졌다고 연구원들은 2021년 1월 JAMA Neurology에 보고했습니다.

 

A patient receiving a low-field scan in an ICU hospital room. The portable scanner is positioned next to the patient’s bed, so that their head and shoulders rest inside the scanner and the rest of their body remains on the bed.

낮은 필드 MRI 스캐너는 예일 뉴 헤이븐 병원의 중환자실에서 침대에 있는 환자를 이미지합니다. 예일 의과 대학

 

더 저렴하고 작은 기계는 환자가 더 자주 후속 스캔을 받을 수 있도록 합니다. 이는 메릴랜드 대학교 칼리지파크의 물리학자이자 하이퍼파인의 공동 설립자인 로널드 월스워스(Ronald Walsworth)와 공감하는 전망입니다. 2007년, 당시 2살이었던 그의 아들은 비암성 뇌종양에 걸렸습니다. 그는 성공적으로 치료를 받았다고 Hyperfine의 자문위원회에서 근무하는 Walsworth는 말합니다. 그런데도 그는 “MRI가 가끔만 사용되기 때문에 징후가 조기에 발견되지 않고 가장 효율적으로 결정되지 않은 일이 있었습니다”라고 말합니다.

 

Swoop의 장점은 팬을 확보했습니다. “오, 세상에, 정말 아름답고 아름다운 기술입니다.”라고 Hyperfine에 재정적 관심이 없는 예일 대학의 소아 신경 외과 의사인 Steven Schiff는 말합니다. 그러나 Swoop은 1.5mm의 해상도가 표준 스캐너의 절반이기 때문에 고자장 스캐너가 포착할 수 있는 세부 사항을 놓칠 수 있습니다. 예를 들어, Sheth의 팀은 표준 MRI로 볼 수 있는 허혈성 뇌졸중을 앓은 50명의 환자의 뇌를 이미지화하는 데 사용했습니다. Swoop은 가장 작은 밀리미터 크기의 스트로크 5개를 놓쳤다고 연구원들은 2022년 4월 Science Advances에 보고했습니다.

 

이 발견은 의사가 각 유형의 스캐너를 언제 사용할지 결정할 때 판단을 내려야 함을 보여줍니다. “너무 걱정할 필요는 없지만 무언가를 놓칠 수 있는 상황을 이해해야 합니다.”라고 그는 말합니다. 그러나 McDowell은 의사들이 저자장 필드 스캐너를 사용하면 의료 과실 소송에 노출될 수 있다고 생각하면 이를 꺼릴 수 있다고 지적합니다.

 

세계의 많은 지역에서 MRI는 단순히 사용할 수 없습니다. 네덜란드의 한 팀은 스캐너가 이를 바꿀 수 있기를 희망합니다. 자석은 Swoop의 자석과 크게 다릅니다. 자동차 제조업체가 1980년대에 개발한 합금인 네오디뮴 철 붕소 4098 큐브로 구성되어 중공 플라스틱 실린더에 내장되어 있으며 균일한 수평장을 생성하기 위해 Halbach 어레이라는 구성으로 배열됩니다. 라이덴 대학 의료 센터의 MRI 물리학자인 앤드류 웹(Andrew Webb)은 “우리 시스템은 본질적으로 더 좋고 왜곡이 적기 때문에 기계 학습과 같은 처리의 도움이 덜 필요하다고 주장합니다.

 

스위스의 민간 기업인 Multiwave Technologies는 스캐너를 시장에 출시하기 위해 노력하고 있습니다. 올해 FDA 승인을 신청할 예정이며 구독 모델로 기계를 임대하는 것을 목표로 한다고 Multiwave의 공동 CEO인 Tryfon Antonakakis는 말합니다. “우리의 목표는 가능한 한 저렴하게 만드는 것이며 반드시 병원에 있을 필요는 없습니다.”라고 엔지니어이자 응용 수학자인 Antonakakis는 말합니다. “우리는 산으로, 개발 도상국의 의료 사막으로 가려고 합니다.”

 

델프트 공과대학의 응용 수학자인 Martin van Gijzen을 포함한 Webb과 그의 동료들은 기술을 전파하기위한 또 다른 계획을 하고 있습니다. “우리는 마틴, 저, 우리 팀 전체가 특허를 내지 않기로 했습니다.”라고 Webb은 말합니다. “모든 것이 오픈 소스가 될 것”이므로 누구나 인터넷에서 디자인을 다운로드하고 스캐너를 만들 수 있습니다. Webb과 동료들은 개발 도상국의 기업가들이 현지에서 제조하기를 희망합니다.

 

아이디어를 구상하기 위해 그들은 키트로 포장된 스캐너를 우간다 음바라라 과학 기술 대학의 생의학 엔지니어인 Johnes Obungoloch에게 배송했는데, 그는 Webb과 Schiff도 그곳에 있을 때 University Park에 있는 펜실베니아 주립 대학의 대학원생이었습니다. 2022년 11월, Webb과 다른 사람들은 Obungoloch와 그의 팀이 11일 만에 스캐너를 조립하는 것을 돕기 위해 우간다로 날아갔습니다.

 

Six people stand around a cylindrical magnet about 2 feet in diameter.

Johnes Obungoloch(오른쪽에서 두 번째), Joshua Harper(왼쪽에서 두 번째) 및 우간다의 소아과 병원에서 수술을 안내할 스캐너용 자석을 들고 있는 동료들.

 

곧 개발 도상국에서 저자장 MRI의 유용성을 테스트하는 프로젝트에 사용될 것입니다. 국제 비영리 단체가 운영하는 음발레의 55개 병상 규모의 소아 신경외과 시설인 우간다 CURE 아동 병원은 오부골로치의 스캐너, Swoop 및 CT 스캐너를 비교할 계획입니다. 의사는 뇌척수액이 뇌에 모여 압축되어 잠재적으로 쇠약하거나 치명적인 손상을 일으키는 뇌수종이 있는 어린이를 이미지화합니다. 전 세계적으로 뇌수종은 매년 400,000명의 어린이를 괴롭히며 CURE 병원 환자의 75%를 차지합니다. 아프리카에서는 감염이 일반적인 원인입니다.

 

수년 동안 Schiff와 병원의 동료들은 CT 스캔을 사용하여 체액이 뇌실로 배출되도록 하는 혁신적인 수술을 안내했습니다. 그러나 CT 스캔은 어린이를 상당한 X- 레이 방사선에 노출시켜 CURE 의사는 저자장 MRI 이미지가 외과의를 안내할 수 있는지를 확인합니다. “MRICT 스캔과 비슷한 것으로 판명되면 더 이상 CT 스캔을 사용해야 할 이유가 없습니다.“라고 프로젝트를 지휘하는 CURE의 의사인 Ronald Mulondo는 말합니다.

 

이 연구는 최종 정부 승인을 기다리고 있습니다. 성공하면 Obungoloch는 아프리카의 다른 6개 CURE 병원을 위해 더 많은 스캐너를 구축하고 일부 부품을 현지에서 조달할 계획입니다. 우간다에는 공공 의료 서비스가 있으므로 비전은 정부 자금에 달려 있다고 그는 말합니다.

 

그러나 다른 곳의 동료들과 마찬가지로 우간다의 의사들은 이 기술의 제한된 해상도에 대해 의구심을 가질 수 있다고 Obungoloch는 말합니다. “방사선 전문의는 그것을 보고 ‘음, 이것은 엉터리 이미지이며 우리는 당신이 그것을 얻는 데 얼마나 오래 걸렸는지 상관하지 않습니다.’라고 말합니다.” 정부 관리들은 또한 우간다인들이 아무리 유용하더라도 저해상도 이미징에 안주할 필요가 없다고 생각할 수도 있다고 그는 말합니다.

 

사실, 저자장 MRI 개발자들은 의료 영상에 대한 재고를 추진하고 있습니다. “최고의 기술은 최고 품질의 이미지를 제공할 수 있는 스캐너입니까, 아니면 가장 개선된 환자 결과를 가져올 수 있는 스캐너입니까?” Webb의 오픈 소스 장비를 공동 작업하고 Swoop을 인수하기를 희망하는 Harper는 묻습니다.

 

Sheth는 의사를 이길 수 있는 것은 스캐너를 위한 킬러앱인 “사용 사례”가 될 것이라고 말합니다. 예를 들어, 뇌졸중 치료를 위해 특수 구급차에 실릴 수 있습니다. 그는 Hyperfine과 다른 사람들이 그 사용 사례를 발견했는지 의문을 제기하지만, 그것이 올 것으로 예측합니다.

 

그런 다음 이길 환자가 있습니다. 하이퍼파인 스캐너에서 시간을 보낸 후 뇌하수체 종양 환자는 Yadlapalli에게 일반 MRI만큼 편안하지 않다고 털어놓습니다. 수술 때문에 여전히 코로 숨을 쉴 수 없다는 점에 주목하면서 그는 꼭 맞는 머리 바구니가 그를 괴롭혔다고 말합니다. “차라리 진짜 MRI로 넘어가고 싶어요.” 그를 마지 못해 개척자라고 부르십시오.

 

Correction, 24 February, 2:45 p.m.: This story has been updated to correctly identify the people in the photo with the magnet assembled in Uganda.

철분 부족은 남극해의 먹이 사슬의 핵심인 미생물을 위협합니다.

식물성 플랑크톤 꽃은 철분이 풍부한 물의 융기에 달려 있습니다.

 

Iron shortage threatens microbes key to food chain in Southern Ocean

Phytoplankton blooms depend on the upwelling of iron-rich water

23 FEB 20232:00 PMBYWARREN CORNWALL

https://www.science.org/content/article/iron-shortage-threatens-microbes-key-food-chain-southern-ocean

의 간단 번역입니다.

매년 봄 남극 대륙의 얼음 해안에서 우주에서 볼 수 있을 정도로 큰 생명의 폭발이 펼쳐집니다. 철분이 풍부한 물이 아래에서 솟아오르면 남극해의 표면은 밝은 녹색 식물성 플랑크톤의 환각 구름으로 소용돌이치며, 단세포 생물은 대기에서 탄소를 빨아들이고 크릴을 유지하여 먹이 사슬의 기초를 형성하며, 크릴은 차례로 물고기, 고래, 펭귄의 주요 먹이 공급원입니다.

 

이제 한 과학자 그룹은 지난 25년 동안 생태계와 기후에서 중요한 역할을 하는 이 계절적 꽃이 위험에 처할 수 있다고 말합니다. 남극해의 식물성 플랑크톤은 광합성 기계의 빌딩 블록인 철이 점점 더 굶주리고 있으며 생산성이 감소할 수 있는 징후가 있습니다. 오늘 Science 지에 발표된 이 발견은 많은 기후 모델이 다가오는 세기에 대해 예측한 생산성의 급증에 직접 반대하는 놀라운 일입니다.

 

변화의 명백한 속도는 “정말 놀랍다”고 채플 힐에 있는 노스 캐롤라이나 대학의 생물 해양학자인 Adrian Marchetti는 식물성 플랑크톤을 연구하지만, 연구에 직접 참여하지는 않았다고 말합니다. 식물성 플랑크톤의 큰 감소는 “지구 탄소 순환에 실제로 영향을 미칠 수 있다”라고, 해양 탄소를 연구하는 워싱턴 대학교 시애틀 해양학자 앨리슨 그레이는 덧붙인다.

 

 

해양 철분 수준은 남극해에서 식물성 플랑크톤 생산성을 제한하는 중요한 요소로 알려졌지만 연구하기 어려운 것으로 악명이 높습니다. 로봇 센서나 연구선은 일상적으로 영양소를 찾지 않습니다. 그래서 과학자들은 최근에 식물성 플랑크톤이 철분 부족에 대처하고 있다는 신호를 찾아 그 수준을 추론하기 시작했습니다.

 

새로운 연구는 식물성 플랑크톤이 방출하는 빛을 비광화학 담금질이라고 불리는 생리적 과정의 징후로 분석했는데, 여기서 식물성 플랑크톤은 열을 방출하여 과도한 햇빛을 처리합니다. 담금질은 철분 스트레스의 지표인데, 영양소가 부족한 식물성 플랑크톤은 빛에 더 취약하게 만드는 방식으로 생리학을 변경하기 때문입니다. 194 년부터 시작된 연구 선박의 194회 여행과 1996년부터 표류하는 47개의 센서를 실은 부유물의 데이터에서 연구원들은 빛 노출의 변화를 조정할 때 담금질이 연간 거의 5% 증가한 것을 발견했습니다. 이 추세는 지난 2년 동안 식물성 플랑크톤이 충분한 철분을 얻기 위해 점점 더 고군분투하고 있음을 시사한다고 남아프리카 정부의 남극해 탄소 및 기후 관측소의 생지화학자이자 Science 논문의 수석 저자 인 Tommy Ryan-Keogh는 말합니다.

 

Ryan-Keogh와 그의 공동 연구자들은 플랑크톤 꽃의 위성 이미지와 바다 부유물의 측정을 사용하여 1998 년부터 변화를 추적하여 식물성 플랑크톤 생산성도 조사했습니다. 그들은 데이터를 순 식물성 플랑크톤 생산성의 추정치로 변환하기 위해 모델에 의존하여 남극해에서 작지만, 통계적으로 유의미한 생산성 감소를 발견했습니다.

 

쇠퇴가 현실이라고 해도 철이 역할을 하고 있는지는 확실하지 않습니다. 수십 년 동안 남극해의 철 역학을 연구해 온 태즈메이니아 대학의 생지화학자인 필립 보이드는 다른 잠재적 요인을 지적합니다. 예를 들어, 해양 동물은 식물성 플랑크톤을 더 많이 먹을 수 있습니다. “철 스트레스와 순 1차 생산을 직접 연결하는 것은 긴 활입니다.”라고 그는 말합니다.

 

식물성 플랑크톤이 철분 부족에 직면하는 이유도 명확하지 않습니다. 현재의 기후와 해양 모델은 기후 변화에 따라 남극해의 바람이 남쪽으로 이동하여 더 많은 융기를 일으켜 바다 깊은 곳에서 표면으로 철을 가져오고 생산성의 폭발을 촉진하리라 예측합니다. Ryan-Keogh는 식물성 플랑크톤에 철분이 부족한 세 가지 가능한 이유를 제안합니다 : 이산화탄소 수준 상승으로 인한 해양 산성화는 영양소 흡수를 더 어렵게 만들 수 있으며, 해수 온도 상승은 신진대사를 가속하고 철분 수요를 증가시킬 수 있으며, 해양 혼합의 다른 층이 더 깊은 곳의 움직임을 제한할 방법의 변화, 철분이 풍부한 물이 표면을 향합니다. “이를 테스트하려면 많은 실험실 작업이 필요합니다.”라고 Ryan-Keogh는 말합니다.

 

무슨 일이 일어나고 있는지 분리하는 것은 남극해의 미래 생태계 변화를 이해하는 것뿐만 아니라 지구 기후의 운명을 예측하는 데에도 중요합니다. 남극해는 중요한 탄소 흡수원입니다. 바다에 용해되는 모든 탄소 오염의 절반이 바다에서 발생합니다. 그 용해 된 탄소 중 일부는 식물성 플랑크톤에 의해 흡수되어 생물 또는 생물을 먹는 유기체가 죽어 바닥으로 가라앉을 때 저장됩니다.

 

이 연구에 참여한 리버풀 대학의 해양학자 알레산드로 타글리아부에(Alessandro Tagliabue)는 철 기아 추세가 일시적일 수 있다고 말합니다. 그러나 미래의 풍요를 예측하는 모델이 남극해와 그곳에 사는 유기체에 대해 잘못 표현하고 있을 수도 있습니다. “우리는 모델이 현재의 추세를 재현하지 않는 이유를 알아야 합니다.”라고 해양 생지화학적 과정 모델링을 전문으로 하는 Tagliabue는 말합니다.

 

널리 사용되는 여러 기후 모델을 연구한 캘리포니아 대학교 어바인 (University of California, Irvine)의 해양학자 키스 무어 (Keith Moore)는 이 추세가 오래 가지 못할 것이라고 확신한다. 그는 이 논문이 현재 식물성 플랑크톤의 철분 결핍이 증가하고 있다는 설득력 있는 사례를 제시한다고 말하지만, 무어는 모델이 예측한 대로 바람이 결국 남쪽으로 이동하고 식물성 플랑크톤 꽃이 그 어느 때보다 무성해질 것으로 예상합니다. “지금 일어나고 있는 일은 그 모델들이 알아차리기에는 너무 미묘할 수 있습니다.”라고 그는 말합니다.

doi: 10.1126/science.adh3116