태그 보관물: 단백질

단백질의 구조와 기능-과학 심화 탐구

단백질의 구조와 기능

단백질은 하나 또는 그 이상의 폴리펩타이드가 꼬이거나 접혀서 생성된 독특한 3차원 구조(입체 구조)를 가진다. 단백질 구조는 보통 자발적으로 생성된다. 단백질이 세포에서 합성되면서 아미노산 서열에 따라 사슬의 부분 사이에 다양한 형태의 결합이 형성된다. 단백질의 독특한 형태는 다른 분자를 인식하고 결합할 수 있도록 한다. 구형 단백질은 대략 구 모양을 띠며 섬유성 단백질은 긴 섬유 모양이다.

1차 구조(primary structure)는 유전적으로 암호화된 단백질 내의 아미노산 서열이다.

2차 구조(secondary structure)는 한 펩타이드 결합의 산소와 다른 펩타이드 결합의 질소에 부착한, 부분적으로 양전하를 띠는, 수소 사이의 수소 결합으로 안정화되는, 폴리펩타이드 골격의 꼬임 또는 접힘 부위를 포함한다. α-나선(α-helix)은 매 4번째 아미노산 사이의 수소 결합으로 형성된 나선이다. β 병풍구조(β pleated sheet)는 서로 평행하게 놓인 폴리펩타이드 골격 부위를 따라 반복되는 수소 결합으로 연결되어 있다.

3차 구조(tertiary structure)는 아미노산의 다양한 곁사슬 (R기) 사이의 상호작용으로 인해 생긴 단백질의 3차원 구조이다. 아래와 같은 여러 화학적 상호작용이 안정되고 독특한 단백질 모양을 이루도록 한다: 물에 의한 반발력에 의해 분자의 중심에 모여 덩어리를 이룬 비극성 곁사슬 사이의 소수성 상호작용(hydrophobic interaction), 비극성 곁사슬을 따라 존재하는 반데르발스 상호작용, 극성 곁사슬 사이의 수소 결합 및 음전하를 띤 곁사슬과 양전하를 띤 곁사슬 사이의 이온 결합. 이황화 결합(disulfide bridge)이라 불리는 강한 공유 결합이 폴리펩타이드가 접히면서 가까워진 시스테인의 황화수소기 사이에서 일어나기도 한다.

4차 구조(quaternary structure)는 둘 이상의 폴리펩타이드로 이루어진 단백질에서 일어난다. 각 폴리펩타이드 소단위는 구조적으로 정확하게 배열을 이루면서 연결되어 기능성 단백질을 형성한다.

유전병인 낫형 적혈구빈혈증(sickle-cell disease)은 단 하나의 아미노산이 변화되어 헤모글로빈 분자 구조에 영향을 미쳐서 적혈구 세포를 낫모양으로 변형시켜 작은 혈관을 막는다.

단백질의 3차 구조를 유지하는 결합이나 상호작용은 pH 변화, 염 농도나 온도 등의 방해를 받아 단백질을 풀리게 한다. 단백질을 유기 용매에 넣어도 변성(denaturation)된다. 이 경우 소수성 부위는 비극성 용매와 작용하여 바깥쪽에 위치하게 된다.

생화학자들은 X선 결정학(X-ray crystallography) 기술을 사용하여 많은 단백질의 구조를 밝혀냈다. 이러한 구조들을 한 단백질의 서로 다른 부위의 특정한 기능과 연관시킬 수 있다.

참고자료: 캠벨 생명과학 요점과 문제풀이, Martha R. Taylor , Urry , Cain , Wasserman , Minorsky , Jackson , Reece 저자(글) · 전상학 , 강성만 , 고영규 , 권혁빈 외 23명 번역, 바이오사이언스 · 2016년 08월 30일

추천도서:

레닌저 생화학(상), David L. Nelson , Michael M. Cox 저자(글) · 윤경식 , 김호식 , 강인숙 , 권소희, 김훈, 박윤규, 백행운, 여의주, 우현애, 이승진, 이효종, 조용연, 주상훈, 최원재, 최정혜, 한병우 번역

생화학(Stryer), Jeremy M. Berg , John L. Tymoczko , Gregory J. Gatto, Jr. , Lubert Stryer 저자(글) · 고문주 번역, 범문에듀케이션 · 2020년 09월 07일

화학의 미스터리, 김성근 , 이영민 , 김경택 , 정택동 , 윤완수 , 김유수 , 이동환 , 이광렬 , 석차옥 , 박태현 저자(글)

반니 · 2019년 09월 30일

단백질이 없으면 생명도 없다, 다케무라 마사하루 저자(글) · 배영진 번역, 전나무숲 · 2018년 11월 19일

단백질 실험노트(상), 강전아인 , 宮崎 香 저자(글) · 안봉애 , 이용호 번역, 바이오사이언스출판 · 2017년 08월 30일

단백질체학, Richard M. Twyman 저자(글) · 임재환 , 김용태 , 김용호 , 김지인 , 김지회 , 백규원 , 서을원 , 소인섭 , 이상원 , 이용석 번역, 월드사이언스 · 2019년 02월 10일

프리온, D. T. 맥스 저자(글) · 강병철 번역, 꿈꿀자유 · 2022년 08월 01일

잠 못들 정도로 재미있는 이야기: 단백질, 후지타 사토시 저자(글) · 김정아 번역 · 차원 감역, 성안당 · 2020년 12월 15일

심화 탐구 참고 논문

단백질 구조 형성 원리

Principles of protein folding–a perspective from simple exact models.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143098/

Recent advances in de novo protein design: Principles, methods, and applications

https://www.sciencedirect.com/science/article/pii/S0021925821003367

Advances in protein structure prediction and design

https://www.nature.com/articles/s41580-019-0163-x

단백질 구조 예측

Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms

https://www.sciencedirect.com/science/article/pii/S1672022923000657

Toward the solution of the protein structure prediction problem

https://www.jbc.org/article/S0021-9258(21)00670-0/fulltext

단백질 구조 예측과 항체 설계

Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies

https://www.nature.com/articles/s41467-023-38063-x

Antibody structure prediction using interpretable deep learning

https://www.sciencedirect.com/science/article/pii/S2666389921002804

Challenges in antibody structure prediction

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928471/

생명심화탐구 수업 신청

https://simagebank.com/wp/599/

문어가 팔로 맛보는 방법

초특화된 단백질은 문어와 오징어가 빨판으로 표면을 맛볼 수 있도록 하며, 이러한 단백질은 각 동물의 생활 방식에 맞게 조정됩니다.

NEWS, 12 April 2023

How octopuses taste with their arms

Ultra-specialized proteins enable octopuses and squids to taste surfaces with their suckers — and these proteins are tailored to each animal’s way of life.

https://www.nature.com/articles/d41586-023-01010-3

캘리포니아 두 자리 문어(Octopus bimaculoides)는 가장 좋아하는 음식 중 하나인 피들러 크랩(Leptuca pugilator)을 잡습니다. 크레딧: Peter Kilian

문어와 오징어는 둘 다 팔다리에 있는 빨판을 사용하여 먹이와 씨름하고 동시에 채석장을 맛봅니다. 이제 한 쌍의 연구는이 동물들이 어떻게 ‘만져서 맛보는지’와 진화가 어떻게 그들의 라이프 스타일에 완벽한 감각 능력을 갖추 었는지를 설명합니다1,2. 이 논문은 4월 12일 네이처(Nature)에 게재됐다.

이 연구는 동물의 빨판에 박힌 수용체의 구조를 자세히 설명합니다. 이 수용체는 생물이 물에 떠 있는 화학 물질과 독립적으로 표면의 화학 물질을 맛볼 수 있도록 하는 정보를 전달합니다.

 

두뇌로 무장

문어와 오징어를 포함하는 그룹인 두족류는 뇌와 감각 시스템이 다른 동물에서 발견되는 것과 다르므로 오랫동안 신경과학자들을 매료시켜 왔습니다. 예를 들어, 문어는 중앙 뇌보다 팔에 더 많은 뉴런을 가지고 있는데, 이는 각 팔이 마치 자신의 뇌를 가지고 있는 것처럼 독립적으로 기능할 수 있도록 하는 구조입니다3. 그리고 연구자들은 각 팔에 있는 수백 개의 빨판이 환경을 느끼고 맛볼 수 있다는 것을 오랫동안 알고 있었습니다4.

매사추세츠주 케임브리지에 있는 하버드 대학교의 분자 생물학자인 니콜라스 벨로노(Nicholas Bellono)와 그의 그룹은 캘리포니아 두 반점 문어(Octopus bimaculoides)를 연구하던 중 동물의 촉수 세포 표면에서 독특한 구조를 발견했습니다. Bellono는 이 구조가 문어 환경에서 화학 물질에 대한 수용체 역할을 한다고 의심했습니다. 그는 캘리포니아 샌디에이고 대학의 신경 생물학자 라이언 힉스 (Ryan Hibbs)에게 연락했는데, 그는 Bellono 팀이 발견한 문어 구조와 구조학적으로 유사한 수용체를 연구합니다 : 두 유형 모두 속이 빈 튜브를 형성하기 위해 클러스터링 된 5개의 배럴 모양의 단백질로 구성됩니다.

연구자들이 문어 게놈을 조사했을 때, 그들은 이 배럴 모양의 단백질에 대한 26개의 유전자를 발견했으며, 이를 섞어 다양한 취향을 감지하는 수백만 개의 별개의 다섯 부분 조합을 만들 수 있었습니다1. 연구진은 문어 수용체가 물에 녹지 않는 ‘기름기가 많은’ 분자에 결합하는 경향이 있음을 발견했으며, 이는 문어 껍질, 해저 또는 문어 자신의 알과 같은 표면의 화학 물질을 감지하는 데 최적화되어 있음을 시사합니다.

저자들은 빨판에 다양한 분자가 있으면 문어가 처리를 위해 이 정보를 뇌에 보낼 필요 없이 맛이 무엇인지 빠르게 결정할 수 있다고 생각합니다.

 

쓴 알약

Nature의 두 번째 연구에서 Bellono, Hibbs 및 동료들은 이러한 화학 수용체가 두족류에서 어떻게 발생하는지 연구했습니다2. 수용체는 다른 많은 유기체가 신경계를 통해 신호를 보내는 데 사용하는 수용체에서 진화한 것으로 보입니다.

연구진은 문어 수용체를 줄무늬 만두 오징어 (Sepioloidea lineolata)의 촉수 빨판에서 발견 된 수용체와 비교한 결과 오징어 수용체가 쓴맛을 내는 분자에 반응한다는 것을 발견했습니다. 이것은 오징어가 이 특정 취향에 따라 먹이를 받아들이거나 거부할 수 있음을 시사합니다.

오징어와 문어의 게놈을 분석한 결과, 오징어와 문어의 조상이 약 300억 년 전에 갈라진 후 수용체가 독립적으로 진화하여 시간이 지남에 따라 새로운 특성을 획득하는 것으로 나타났습니다. 오징어는 물에 떠서 먹이를 보고 촉수를 쏘아 포획하는데, 이는 빨판이 물고기를 만질 때까지 물고기를 맛보지 못한다는 것을 의미합니다. 그러나 해저에 앉아서 먹이를 찾는 경향이 있는 문어의 경우 다양한 민감한 촉수 빨판을 갖는 것이 중요합니다.

“그렇게 빨리 많은 통찰력을 얻는 것은 정말 흥미진진한 일입니다.”라고 일리노이주 시카고 대학의 진화 생물학자 클리프 래그스데일 (Cliff Ragsdale)은 말합니다. 그는 그 발견이 빨판이 문어의 뇌에 감각 정보를 보내는 방법과 뇌가 그것을 해석하는 방법을 포함하여 많은 질문을 제기한다고 말합니다.

doi: https://doi.org/10.1038/d41586-023-01010-3

References

Allard, C. A. H. et al. Nature https://doi.org/10.1038/s41586-023-05822-1 (2023).

Kang, G. et al. Nature https://doi.org/10.1038/s41586-023-05808-z (2023).

Gutnick, T., Zullo, L., Hochner, B. & Kuba, M. J. Curr. Biol. 30, 4322–4327 (2020).

Graziadei, P. P. C. & Gagne, H. T. J. Morphol. 150, 639–679 (1976).

텔로미어 단백질에 대한 간단한 혈액 검사는 특정 암에 대한 귀중한 검사를 제공할 수 있습니다

Simple blood tests for telomeric protein could provide a valuable screen for certain cancers

https://www.news-medical.net/news/20230221/Simple-blood-tests-for-telomeric-protein-could-provide-a-valuable-screen-for-certain-cancers.aspx

의 간단 번역입니다.

Reviewed by Emily Henderson, B.Sc.Feb 21 2023

 

DNA의 단순한 단조로운 반복으로 인해 단백질을 암호화할 수 없다고 생각되었던 염색체 끝의 작은 텔로미어는 암과 노화에 대한 우리의 이해와 잠재적으로 관련이 있는 강력한 생물학적 기능을 보유하고 있는 것으로 보입니다.

 

UNC 의과 대학 연구원 Taghreed Al-Turki 박사와 Jack Griffith 박사는 텔로미어가 두 개의 작은 단백질을 생산하는 유전 정보를 포함하고 있다는 놀라운 발견을 했으며, 그중 하나는 일부 인간 암세포와 텔로미어 관련 결함으로 고통받는 환자의 세포에서 상승했다.

 

우리의 연구에 따르면, 우리는 이러한 단백질에 대한 간단한 혈액 검사가 특정 암 및 기타 인간 질병에 대한 귀중한 선별 검사를 제공할 수 있다고 생각합니다. 이 검사는 또한 텔로미어가 나이가 들면서 짧아진다는 것을 알고 있으므로 ‘텔로미어 건강’의 척도를 제공할 수 있습니다.”

 

Jack Griffith, PhD, Kenan 미생물학 및 면역학 석좌 교수 및 UNC Lineberger 종합 암 센터 회원

 

텔로미어는 염색체가 서로 달라붙는 것을 억제하는 TTAGGG 염기의 끝없는 반복으로 구성된 독특한 DNA 서열을 포함합니다. 20년 전, 그리피스 연구소는 텔로미어의 DNA 끝이 스스로 반복되어 작은 원을 형성하여 끝을 숨기고 염색체 간 융합을 차단한다는 것을 보여주었습니다. 세포가 분열하면 텔로미어가 짧아지고 결국 너무 짧아져 세포가 정상적으로 분열할 수 없어 세포 사멸로 이어집니다.

 

과학자들은 약 80년 전에 텔로미어를 처음으로 확인했으며, 그 단조로운 순서 때문에 이 분야의 확립된 교리는 텔로미어가 강력한 생물학적 기능을 가진 단백질은 고사하고 어떤 단백질도 암호화할 수 없다고 주장했습니다.

 

2011년 플로리다의 한 그룹은 유전된 형태의 ALS를 연구하고 있으며, 범인은 새로운 메커니즘에 의해 두 개의 아미노산이 차례로 반복되는 일련의 독성 단백질을 생성할 수 있는 6개의 염기 반복을 포함하는 RNA 분자라고 보고했습니다. Al-Turki와 Griffith는 그들의 논문에서 이 RNA가 인간 텔로미어에서 생성된 RNA와 현저한 유사성을 지적하고 같은 새로운 메커니즘이 작용할 수 있다는 가설을 세웠습니다.

 

그들은 PNAS 논문에 설명된 대로 텔로미어 DNA가 VR(발린-아르기닌) 및 GL(글리신-류신)이라고 부르는 신호 단백질을 생성하도록 세포에 지시할 수 있는 방법을 보여주기 위해 실험을 수행했습니다. 신호 단백질은 본질적으로 세포 내부의 다른 단백질의 연쇄 반응을 유발하여 건강이나 질병에 중요한 생물학적 기능을 유발하는 화학 물질입니다.

 

그런 다음 Al-Turki와 Griffith는 최첨단 생물학적 방법과 함께 강력한 전자 및 컨포칼 현미경을 사용하여 특성을 조사하기 위해 VR과 GL을 화학적으로 합성하여 VR 단백질이 일부 인간 암세포와 텔로미어 결함으로 인한 질병으로 고통받는 환자의 세포에 많은 양으로 존재한다는 것을 밝혔습니다.

 

“우리는 나이가 들어감에 따라 혈액 내 VR과 GL의 양이 꾸준히 증가하여 잠재적으로 연대순 연령과 대조되는 생물학적 연령에 대한 새로운 바이오 마커를 제공할 가능성이 있다고 생각합니다.”라고 Griffith 실험실의 박사후 연구원인 Al-Turki는 말했습니다. “우리는 염증이 또한 이러한 단백질의 생산을 유발할 수 있다고 생각합니다.”

 

Griffith는 “현재의 생각에 어긋날 때, 당신은 자신의 분야에서 부지런히 일한 많은 사람들을 비난하고 있기 때문에 일반적으로 틀립니다. 그러나 때때로 과학자들은 매우 먼 두 분야의 관측을 합치는 데 실패했고 그것이 우리가 한 일입니다. 텔로미어가 두 개의 새로운 신호 단백질을 암호화한다는 사실을 발견하면 암, 노화 및 세포가 다른 세포와 통신하는 방식에 대한 우리의 이해가 바뀔 것입니다.

 

“많은 질문에 답해야 하지만 현재 우리의 가장 큰 우선순위는 이러한 단백질에 대한 간단한 혈액 검사를 개발하는 것입니다. 이것은 우리의 생물학적 나이를 알려주고 암이나 염증과 같은 문제에 대한 경고를 제공할 수 있습니다.”

 

Source:

University of North Carolina Health Care

Journal reference:

Al-Turki, T., et al. (2023) Mammalian Telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. PNAS. doi.org/10.1073/pnas.2221529120.

신경 퇴행성 질환의 특징

Hallmarks of neurodegenerative diseases

https://www.sciencedirect.com/science/article/pii/S0092867422015756

의 간단 번역입니다.

 

요약

수십 년간의 연구를 통해 신경 퇴행성 질환들 (NDDs)과 관련된 유전적 요인과 생화학적 경로가 확인되었습니다. 우리는 NDD의 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸과 같은 NDD의 8가지 특징에 대한 증거를 제시합니다. 우리는 특징, 바이오마커 및 상호 작용을 전체론적 접근 방식을 사용하여 NDD를 연구하기 위한 프레임워크로 설명합니다. 이 프레임워크는 병원성 메커니즘을 정의하고, 주요 특징에 따라 다양한 NDD를 분류하고, 특정 NDD 내에서 환자를 계층화하고, NDD를 효과적으로 중단하기 위한 다중 표적 개인화된 치료법을 설계하기 위한 기초가 될 수 있습니다.

 

키워드

신경 퇴행성 질환신경 퇴행특징단백질 응집시냅스 및 신경 네트워크 기능 장애단백질끈 세포 골격결함 에너지 항상성DNA 및 RNA 결함염증

 

소개

신경 퇴행성 질환 (NDD)은 전 세계 수백만 명의 삶에 악영향을 미치는 이질적인 신경 장애 그룹이며 중추 신경계 (CNS) 또는 말초 신경계 (PNS)에서 뉴런의 점진적인 손실을 수반합니다. 신경망의 구조와 기능의 붕괴와 말기 차별화 특성으로 인해 효율적으로 갱신할 수 없는 뉴런의 손실은 핵심 통신 회로의 붕괴를 초래하여 기억, 인지, 행동, 감각 및/또는 운동 기능 장애로 절정에 달합니다.

 

우리는 이 리뷰에서 NDD를 정의하는 일련의 특징, 즉 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 대사 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸을 분명히 보여줍니다(그림 1).

 

그림 1. 신경 퇴행성 질환의 특징

 

이 체계는 기사에 설명된 8가지 특징을 식별하고 보여줍니다. 수십 년간의 기본, 번역 및 임상 연구를 바탕으로 많은 NDD의 기저에 있는 유전적 요인과 생화학적 경로가 확인되어 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸.

 

그림 2. 특징적인 응집 단백질, NDD의 뇌 영역과 연결되고 영향을 받는 유전자

 

그림 3. NDD 특징과 그 위치에 대한 개략적인 표현

 

그림 4. NDD를 효과적으로 중단하기 위한 개인화, 조합 및 다중 표적 치료의 기초로서 NDD를 분류하고 NDD 내에서 하위 유형을 식별하기 위한 프레임워크로서의 NDD의 특징과 상호 연결성

 

병리학 적 단백질 응집

병리학적 단백질 응집체는 NDD의 특징입니다.

유전학의 기계론적 통찰: 독성 기능의 획득 대 기능의 상실

프리온과 같은 번식

단백질 응집 및 독성

NDD 단백질 응집을 위한 바이오마커

비 단백 병성 신경 퇴행성 질환

시냅스 및 신경 네트워크 기능 장애

비정상적인 단백성

유비퀴틴-프로테아좀 시스템

자가포식 리소좀 경로

세포 골격 이상

변경된 에너지 항상성

DNA 및 RNA 결함

DNA 결함

RNA 결함

염증

신경 세포 사멸

NDD의 특징: NDD 연구를 위한 전체론적 접근 방식을 위한 프레임워크

NDD 특징의 상호 연결성은 다중 표적 치료의 필요성을 강조합니다.

NDD 간 및 NDD 내에서 공통점과 다양화를 식별하기 위한 프레임워크

임상 시험을 위한 특정 NDD 내에서 하위 유형의 계층화를 위한 프레임워크

에볼라 바이러스에 대한 최초의 FDA 승인 치료법의 구조와 기능 발견

Structure and function of the first FDA-approved treatment for Ebola virus discovered

https://www.news-medical.net/news/20230130/Structure-and-function-of-the-first-FDA-approved-treatment-for-Ebola-virus-discovered.aspx

의 간단 번역입니다.

Reviewed by Emily Henderson, B.Sc.Jan 30 2023

라호야 면역학 연구소(LJI)의 과학자들은 자이르 에볼라바이러스(에볼라 바이러스)에 대한 최초의 FDA 승인 치료법의 구조와 기능을 밝혀냈습니다.

리제네론이 개발한 인마제브(REGN-EB3)는 에볼라 바이러스 당단백질을 표적으로 삼도록 설계된 3개의 항체 칵테일이다. 이 약물은 2020년 10월에 임상 사용을 위해 처음 승인되었지만 정확한 작용 메커니즘은 불분명합니다.

Cell Host & Microbe 최신호의 커버 스토리에서 LJI 연구원들은 에볼라 바이러스 당단백질(에볼라 바이러스 감염을 일으키는 바이러스 단백질)에 결합하는 세 가지 항체의 고해상도 3D 구조를 제시합니다. 이 모델은 약물과 바이러스에 대한 새로운 정보와 이들의 상호 작용이 감염과 싸우고 미래의 바이러스 돌연변이로부터 보호하는 방법을 보여줍니다.

새로운 연구는 또한 Inmazeb이 추가 종류의 에볼라 바이러스를 치료할 가능성을 보여줍니다.

새로운 연구는 Inmazeb (REGN-EB3)에 사용 된 3개의 항체(하늘색, 진한 파란색 및 노란색)가 감염과 싸우기 위해 에볼라 바이러스 당 단백질 (회색)의 다른 영역에 결합하는 방법을 보여줍니다.

항체 칵테일의 작동 원리

3.1 옹스트롬에서 3D 구조는 비대칭 재구성을 사용하여 조립된 에볼라 바이러스 표면 단백질의 최고 해상도 이미지입니다. 연구원들은 극저온 전자 현미경(cryo-EM)이라는 이미징 기술을 통해 이 상세한 보기를 달성했습니다.

“그것은 단백질의 머그샷을 얻는 것과 같습니다.”라고 LJI에서 박사후 연구원으로 프로젝트를 주도했으며 현재 Cryo-EM의 Pacific Northwest Center에서 근무하는 제1 저자인 Vamseedhar Rayaprolu 박사는 말했습니다. “우리는 모든 각도에서 얼어붙은 복합 단지의 사진을 찍은 다음 함께 연결하여 3D 모델을 얻습니다.”

이 이미지 덕분에 LJI 팀은 즉시 약물뿐만 아니라 에볼라 바이러스 자체에 대해서도 발견했습니다. 에볼라 당 단백질의 전반적인 구조는 얼마 동안 알려져 왔지만, 한 영역은 아직 효과적으로 모델링되지 않았습니다 – 단백질의 글리 칸 캡에있는 β17-β18 루프.

Rayaprolu는 “이 작품은 일반적으로 너무 플로피되어 이미징할 수 없지만 항체가 바이러스에 결합되었을 때 루프를 제자리에 고정시켰고 마침내 그 위치와 구조를 캡처할 수 있었습니다”라고 말했습니다.

그런 다음 연구팀은 약물의 세 가지 항체가 겹치지 않는 뚜렷한 위치에서 당 단백질에 결합하여 중복을 최소화하여 효과를 극대화한다는 것을 확인했습니다.

아톨티비맙(REGN3470)은 β17-β18 루프에 결합하는 특이적 항체입니다. 결합하면 이 항체는 면역 체계를 유인하는 신호 역할을 하여 감염된 세포가 이펙터 기능을 통해 죽임을 표시하도록 표시할 수 있습니다.

오데시비맙(REGN3471)이라고 하는 두 번째 항체는 당단백질의 수용체 결합 부위의 아미노산에 결합하여 바이러스가 인간 세포에 부착되는 것을 방지합니다.

마프티비맙(REGN3479)이라고 하는 세 번째 항체는 바이러스가 세포 속으로 들어가는 데 필요한 당단백질의 내부 융합 루프에 결합하고 뒤틀립니다. 연구원들은 또한 maftivimab이 다른 유형의 에볼라 바이러스에 대한 향후 치료법에서 가치가 있을 수 있다는 증거를 발견했습니다.

하나 이상의 바이러스 퇴치

“SARS-CoV-2와 마찬가지로 에볼라 바이러스는 시간이 지남에 따라 변했고 원래 바이러스와 달라졌습니다.”라고 Boston University Chobanian & Avedisian School of Medicine의 National Emerging Infectious Disease Laboratories (NEIDL) 교수 인 Robert Davey 박사는 말합니다. Davey가 지적했듯이 에볼라 바이러스는 더 큰 필로 바이러스 계열의 유일한 위험한 구성원이 아닙니다. 이 제품군에는 수단 에볼라바이러스(2022년 수단 에볼라바이러스 발병으로 우간다에서 최소 55명 사망) 및 더 먼 관련 마르부르크 바이러스와 같은 밀접하게 관련된 에볼라바이러스 종이 포함됩니다.

Davey의 실험실과 Regeneron의 연구 공동 연구자들이 이끄는 일련의 탈출 연구를 통해 팀은 Inmazeb이 수단 에볼라 바이러스를 포함한 필로 바이러스의 에볼라 바이러스 속의 여러 바이러스로부터 잠재적으로 보호 할 수 있음을 발견했습니다.

핵심은 마프티비맙 항체인 것으로 보인다. Maftivimab의 표적 인 바이러스 당 단백질의 내부 융합 루프는 이러한 에볼라 바이러스 전반에 걸쳐 보존됩니다. 이는 바이러스의 다른 부분이 시간이 지남에 따라 돌연변이를 일으켰음에도 불구하고 루프 구조가 크게 변경되지 않았음을 의미합니다.

“우리는 일반적으로 Inmazeb의 항체가 보다 밀접하게 관련된 바이러스에 효과적일 수 있음을 발견했습니다.”라고 Davey는 말합니다. “그러나 Marburg와 같이 더 멀리 떨어져 있는 종의 경우 새로운 항체 칵테일을 고안하기 위해 더 많은 연구가 필요합니다.”

Inmazeb은 또한 새로운 에볼라 바이러스 변종과 싸울 수 있습니까? 연구자들은 세 가지 항체가 모두 존재하는 상태에서 발견했습니다. 에볼라 바이러스는 약물의 영향을 부분적으로 피하기 위해 10 차례의 복제와 여러 돌연변이를 거쳐야 합니다. 대조적으로, 단일 항체만을 사용하면 단 하나 또는 두 개의 계대 내에서 돌연변이를 피할 수 있습니다.

이 발견은 Inmazeb이 변종에 대한 지속적인 면역을 제공 할 수 있음을 시사합니다. 새로운 발견은 또한 당 단백질을 보다 광범위하거나 효과적으로 표적으로 하는 새로운 항체 약물의 개발을 안내 할 수 있습니다.

“우리는 이제 서로 다른 항체의 착륙 부위의 미묘한 변화가 기능에 어떤 영향을 미치는지 이해합니다.”라고 Rayaprolu는 말합니다. “이것은 우리에게 다소 효과적인 면역 반응의 차이를 말해줍니다.”

“약물이 바이러스와 접촉하는 위치를 정확히 알면 새로운 바이러스 변종에 여전히 작용할 가능성이 있는지를 예측하는 데 도움이 됩니다.”라고 Saphire는 덧붙입니다. “이러한 방법과 연구 협력자들의 통찰력은 차세대 백신 개발에 필수적일 것입니다.“

Source:

La Jolla Institute for Immunology

Journal reference:

Rayaprolu, V., et al. (2023) Structure of the Inmazeb cocktail and resistance to Ebola virus escape. Cell Host & Microbe. doi.org/10.1016/j.chom.2023.01.002.