카테고리 보관물: 보건의료정책

운동은 건강의 특징을 유지합니다-해외논문번역

Exercise sustains the hallmarks of health

https://www.sciencedirect.com/science/article/pii/S209525462200103X

 하이라이트

  • 규칙적인 운동은 여러 가지 건강상의 이점과 더 나은 생존을 제공합니다.
  • 규칙적인 적당한 강도의 운동은 건강의 주요 특징을 유지합니다.
  • 운동의 건강상의 이점은 여러 조직과 기관의 놀라운 통합적 적응에 있습니다.
  • 운동은 스트레스에 대응하여 건강을 유지하기 위한 보호 전략으로 나타납니다.
  • 규칙적인 운동은 특정 동반 질환이 있는 환자에게 비약리학적 폴립 제로 간주됩니다.

 

초록

운동은 체력을 향상시키고 건강을 유지하는 데 있어 적극적인 역할을 하는 것으로 오랫동안 알려져 왔습니다. 규칙적인 적당한 강도의 운동은 인간 건강의 모든 측면을 개선하며 다양한 질병에 대한 예방 및 치료 전략으로 널리 받아들여지고 있습니다. 운동은 유기체, 조직, 세포 및 분자 수준에서 항상성을 유지하고 복원하여 결과적으로 다양한 병리학적 상태로부터 보호하는 긍정적인 생리학적 적응을 자극한다는 것이 잘 문서화되어 있습니다. 여기에서는 중간 강도 운동이 장벽의 완전성, 국소적 교란의 억제, 재활용 및 전환, 회로 통합, 리듬 진동, 항상성 탄력성, 호르몬 조절, 회복 및 재생을 포함하여 건강의 주요 특징에 어떻게 영향을 미치는지 주로 요약합니다. 또한, 우리는 운동에 대한 반응으로 유익한 적응을 담당하는 메커니즘에 대한 현재의 이해를 요약합니다. 이 리뷰는 중간 강도의 운동이 건강을 유지하고 다른 건강 중재에 적용할 수 있는 창을 여는 중요한 생물학적 메커니즘에 대한 포괄적인 요약을 제공하는 것을 목표로 했습니다. 우리는 이 분야에 대한 지속적인 조사를 통해 중간 강도 운동의 긍정적인 역할과 관련된 과정에 대한 이해를 더욱 높이고 삶의 질을 향상시키는 새로운 치료법을 찾는 데 더 가까워지기를 바랍니다.

 

  1. 소개

현대화로 인해 인구 수명이 연장되었지만, 비만, 고혈압, 제2형 당뇨병, 암 등 비전염성 질병도 지속적으로 증가했습니다. 비전염성 질병은 특정 국가에서 사망의 80% 이상을 초래하기 때문에 이제 전 세계적으로 “제1의 살인자”로 간주됩니다. 비전염성 질병의 유병률은 적어도 부분적으로는 신체 활동이나 운동이 부족하기 때문일 수 있습니다. 세계보건기구(WHO)의 데이터에 따르면, 2016년에 전 세계 성인의 4분의 1 이상이 신체적으로 활동적이지 않았습니다. 신체 활동 부족이라는 세계적인 유행병은 공중 보건의 우선순위가 되어야 합니다. 건강한 생활 방식은 전체 사망률의 위험을 현저히 낮추고 기대 수명을 연장시키는 것과 관련이 있다는 것은 잘 알려져 있습니다. 건강하고 적절한 식이 패턴과 함께 운동은 비만과 관련된 만성 대사 질환 및 염증성 질환의 위험을 줄이기 위한 유망한 전략을 나타냅니다. 일반적으로 신체활동이란 걷기, 육체 노동, 집안일 등 에너지가 있어야 하는 모든 움직임으로 정의됩니다. 이에 반해 운동은 체력 향상을 목표로 계획되고 구성된 신체 활동의 루틴을 의미합니다. 이 리뷰에서 우리는 최대 산소 섭취량 (VO2max )이 70% 미만인 정기적인 중간 강도의 운동을 지칭하기 위해 “규칙적인 운동”이라는 용어를 사용합니다.

 

어린이와 성인은 앉아 있는 시간을 제한해야 하며, 이는 모든 원인으로 인한 사망, 심혈관 질환, 암, 제2형 당뇨병 발병 등 건강에 좋지 않은 결과와 관련이 있습니다. 앉아서 생활하는 행동을 모든 강도(빛의 강도 포함)의 신체 활동으로 대체하는 것은 건강에 유익합니다. 상당한 건강상의 이점을 위해 세계보건기구(WHO)는 성인이 일주일 내내 최소 150~300분의 중강도 또는 75~150분의 고강도 유산소 신체 활동을 수행하거나 중강도와 고강도 유산소 신체 활동을 이에 상응하는 조합으로 수행해야 한다고 권장합니다. 성인은 일주일 내내 중강도 유산소 신체활동을 300분 이상으로 늘리거나, 격렬한 유산소 신체활동을 150분 이상 수행하거나, 중강도와 고강도 유산소 신체활동을 동등한 조합으로 수행하도록 권장됩니다. 성인은 또한 모든 주요 근육 그룹을 포함하는 근육 강화 활동을 일주일에 2일 이상 중간 강도 이상의 강도로 수행하는 것이 좋습니다. 유산소 활동 다음으로 65세 이상 성인은 기능적 균형과 근력 운동을 포함한 복합 신체 활동을 중강도 이상의 강도로 일주일에 3일 이상 하는 것이 좋습니다.

 

임신 전 30시간의 대사 등가 작업은 임신성 당뇨병의 상대적 위험을 12% 감소시키는 것과 관련이 있고, 임신 전과 임신 중 주당 7시간의 신체 활동은 30% 감소와 관련이 있다는 증거가 있습니다. 위험은 각각 37% 감소했습니다. 또한, 주당 500회 대사량에 해당하는 유산소 신체 활동(중등도 신체 활동 150분 또는 고강도 신체 활동 75분에 해당)은 전체 원인으로 인한 사망 위험을 14% 감소시키는 것으로 나타났습니다. 심혈관 질환 환자는 건강한 성인의 경우 위험이 7% 감소합니다. 그리고 5~17세 어린이와 청소년은 하루 평균 60분 동안 중등도에서 격렬한 강도의 신체 활동을 수행했는데, 이는 심폐 건강, 근력 건강, 뼈 건강 및 심대사 건강을 포함한 여러 가지 유익한 건강 결과와 관련이 있었습니다.

 

많은 연구에서 규칙적인 운동이 심혈관 질환의 위험을 줄이고 비만, 제 2형 당뇨병, 다발성 경화증, 뇌졸중, 노화 관련 근육 감소증 및 일부 유형의 암 등 다양한 기타 병리를 앓고 있는 환자의 건강 결과를 개선하는 데 중요한 역할을 한다는 개념을 뒷받침합니다. 역학 연구에 따르면 심혈관 질환 유무와 관계없이 신체 활동 수준이 높을수록 사망 위험이 낮아지지만, 사망률과 관련하여 신체 활동의 이점은 더 큰 것으로 나타납니다. 심혈관 질환이 있는 사람과 심혈관 질환이 없는 사람의 비교. 더욱이, 규칙적인 신체 활동이나 운동은 일반적으로 건강에 해로운 결과(예: 장애 수준, 사망률)의 위험 감소 및 더 나은 생존과 관련이 있습니다. 운동은 낮은 신체 활동과 관련된 만성 질환과 복합 질병을 부분적으로 역전시킬 수 있으며 삶의 질을 향상시키기 위한 예방적 접근 방식으로 사용될 수 있습니다. 또한, 더 많은 양과 더 높은 강도의 신체 활동뿐만 아니라 다양한 유형의 신체 활동(예: 유산소 운동, 근육 및 뼈 강화 활동)은 여러 가지 유익한 건강 결과(예: 심폐 건강, 근육 강화 활동)와 관련이 있습니다. 5~17세 어린이 및 청소년을 위한 피트니스, 뼈 건강 및 심장 대사 건강).

 

근력, 지구력, 균형, 유연성, 협응력과 같은 규칙적인 중간 강도 유형의 운동은 인간 건강의 모든 측면에 유익하며 심혈관 질환(예: 심근병증, 심장병, 심장 질환)을 비롯한 다양한 질병에 대한 치료 및 예방 전략으로 널리 받아들여지고 있습니다. (허혈/ 재관류 손상, 심부전), 대사질환 (예: 고지혈증, 대사증후군, 제2형 당뇨병), 신경계 질환 (예: 파킨슨 병, 다발성 경화증), 폐질환 등. 그러나 신체 운동이 최소 강도 수준을 약화시키는 경우 신체 항상성에 큰 변화가 예상되지 않습니다. 훈련을 받지 않은 개인의 경우 갑자기 격렬한 강도의 운동을 시작하면 심혈관 질환이 발생할 수 있으며 장기간 강렬한 운동을 하면 경색의 발생률이 높아질 수 있습니다. 따라서 운동의 강도와 방식은 건강에 긍정적인 영향을 미치는 데 매우 중요합니다.

 

운동의 생물학은 복잡하며 여러 기관 시스템의 적응 반응을 포함합니다. 움직임과 신체 활동은 에너지 수요를 충족시키기 위해 골격근을 전신 조절자로 바꾸는 진화적 생존 이점입니다. 운동은 심혈관, 호흡기, 근골격계 뿐만 아니라 면역계와 내분비계에도 영향을 미치는 역동적인 에너지 소모 활동입니다. 운동의 효능에 대한 광범위한 조사에도 불구하고 운동의 이점에 대한 기본 메커니즘은 아직 파악하기 어렵습니다. 운동에 대한 심리사회적, 생물학적 반응을 요약한 논문이 꽤 많지만, 대부분은 특정 질병이나 장기 시스템에 초점을 맞추고 있습니다. 우리가 아는 한, 유기체의 전반적인 “조직”과 기본 메커니즘의 관점에서 운동으로 인한 변화를 보고하는 연구는 거의 없습니다.

 

최근 논문에서 이 연구의 공동 저자 중 2명은 건강의 8가지 특징을 제안했습니다: 장벽의 완전성, 국소적 교란의 억제, 재활용 및 회전율, 회로 통합, 리듬 진동, 항상성 탄력성, 호르몬 조절 및 회복 그리고 재생. 더 많은 조사가 필요하지만, 운동이 이러한 특징의 대부분에 영향을 미칠 수 있다는 증거가 풍부 합니다( 그림 1 ). 이 리뷰는 운동이 건강에 유익한 효과를 가져오는 중요한 생물학적 변화에 대한 포괄적인 요약을 제공하는 것을 목표로 했습니다. 또한, 이 리뷰에서는 운동 중재가 질병, 특히 연령 관련 질병(알츠하이머병, 파킨슨병), 제2형 당뇨병, 심혈관 질환(심근병증, 심장 허혈/재관류 손상, 심부전)을 예방하는 데 효과적인 메커니즘을 요약합니다. 및 특정 암(유방암 및 대장암). 더 나은 독해를 위해 동물 연구의 운동 프로토콜을 자세히 설명하는 보충 표 1, 인간 연구의 운동 프로토콜을 자세히 설명하는 표 1, 본 리뷰에서 인용된 무작위 대조 시험을 기반으로 한 증거를 요약한 표 2를 포함했습니다.

구체적인 내용은 원문에서 확인하세요.

  1. 운동은 장벽의 무결성을 보호합니다
  2. 운동은 국소 항상성 유지에 도움이 됩니다
  3. 재활용 및 회전율에 있어서 운동의 이점
  4. 다양한 회로에 대한 운동의 효과
  5. 리듬 진동에 대한 운동의 효과
  6. 항상성 회복력에 있어서 운동의 이점
  7. 호르몬 조절에 있어 운동의 이점
  8. 운동이 회복과 재생에 미치는 영향
  9. 운동이 건강에 미치는 통합적 효과


  1. 결론 및 전망

운동의 유익한 효과는 대사 및 심폐 건강 관련 결과의 개선에 대해 잘 문서화되어 있습니다. 규칙적인 운동은 본질적으로 특정 동반 질환이 있는 환자에게 비약리학적 폴립 제로 간주됩니다. 치료 운동은 비만, 제2형 당뇨병, 심혈관 질환, 노화 관련 근육 위축 및 특정 암과 같은 질병을 예방, 관리 및 치료하기 위해 채택될 수 있습니다. 그러나 운동 프로토콜은 연구마다 다를 수 있으므로 이러한 발견을 해석할 때는 주의해야 합니다.

 

운동은 자유로운 생활을 하는 개인을 정확하게 평가하기 어려운 복잡하고 다차원적인 과정입니다. 운동을 정량화하는 데 적용되는 방법의 일관성 부족은 데이터 분석의 한계이며 실험 결과를 임상 실습으로 전환하는 데 방해가 될 수 있습니다. 따라서 운동과 관련된 향후 작업은 재현성이 뛰어나고 엄격하게 설계되고 잘 보고된 시험을 기반으로 수행되어야 합니다.

 

본 리뷰에서 우리는 생물학적 원인의 관점에서 운동의 건강상의 이점을 요약하려고 시도했습니다. 지면의 제약으로 인해 개별 주제별로 종합적인 리뷰를 제공하기는 어렵습니다. 그러나 지금까지 논의된 주제와 특징은 운동 관련 연구에 대한 기계적 관점을 제공할 수 있습니다. 운동의 생물학은 복잡하므로 각 주제와 특성에 대한 운동의 효과를 설명하기 위해 예를 나열했으며, 이는 운동으로 인한 적응을 포괄적으로 이해하는 데 도움이 될 수 있습니다.

 

현재의 Mendelian 무작위화 연구와 섹션 7.2 의 전통적인 관찰 연구 사이의 상충되는 결과와 관련하여 미래의 연구자들은 운동의 생물학적 경로를 밝히기 위해 더욱 기계적인 연구를 수행해야 합니다. 게다가 운동으로 자극된 기관간 의사소통에 대해서는 아직 연구가 덜 되어 있습니다. 운동과 관련된 기관간 의사소통과 그 기본 메커니즘에 대한 더 자세한 연구는 운동 반응 분자를 식별하는 데 도움이 될 수 있습니다. 규칙적인 운동은 의심할 여지 없이 전반적인 건강에 유익합니다. 그러나 운동의 다양한 건강상의 이점을 뒷받침하는 메커니즘은 복잡하며 세포 소기관(예: 미토콘드리아, 핵, ER)의 적응을 탐구하는 데 전념하는 노력은 운동의 긍정적인 효과를 이해하는 데 도움이 될 수 있습니다.

 

운동의 유익한 효과를 뒷받침하는 메커니즘에 대한 추가 조사는 운동 중재의 설계를 개선하고 치료 효과를 극대화하는 데 도움이 될 것입니다. 그러므로 건강 증진을 위한 운동 방법의 수정을 지향하는 잠재적인 후속 개입의 효과를 더 잘 이해하고 사람의 건강을 향상할 수 있는 특정 분자를 연구하기 위해서는 운동의 과학적 기초에 대한 사전 심층 지식이 필요합니다. 우리는 이 분야에 대한 지속적인 조사가 운동의 유익한 역할과 관련된 과정에 대한 이해를 높이고 삶의 질을 향상하기 위한 새로운 치료법의 식별을 촉진할 수 있기를 바랍니다.

스트레스 반응자, 대격변에 살아남기

게놈의 여분의 복사본을 가지고 있는 배수체 세포는 조직이 부상에 반응하고 종들이 대격변에서 살아남는 데 도움이 될 수 있습니다

https://www.science.org/content/article/cells-extra-genomes-may-help-tissues-respond-injuries-species-survive-cataclysms

 

STRESS RESPONDERS

Polyploid cells, which have extra copies of their genomes, may help tissues respond to injuries and species survive cataclysms

Vicki Losick이 박사 학위를 받았을 때. 그리고 2008년에 카네기 과학 연구소의 초파리 연구실에 합류했습니다. 그 연구소장은 자신의 박사후 연구원이 새로운 연구 분야를 시작할 것으로 기대한다고 발표했습니다. 그녀는 당시 유행하던 줄기 세포, 즉 다른 세포 유형에 특화되고 배아 발달과 성인 조직의 재생에 중요한 역할을 하는 다용도 세포인 줄기세포를 선택했습니다. Losick은 상처 회복에도 도움이 되는지 궁금했습니다. 그래서 그녀와 또 다른 박사후 연구원인 돈 폭스(Don Fox)는 구조하러 오는 줄기세포를 기록하기 위해 작은 바늘로 초파리를 찌르기 시작했습니다.

대신, 두 박사후 연구원은 독립적으로 연구하면서 상처 근처의 다른 세포가 이상하게 행동하는 것을 발견했습니다. 세포는 DNA를 복제하여 성장하고 분열을 준비했습니다. 그런 다음 그들은 멈춰서 각각의 게놈 사본이 여러 개 있는 단일의 확대된 세포로 남았습니다. 현재 Boston College에 재학 중인 Losick은 이렇게 회상합니다. “저는 충격을 받았습니다.

며칠 후 그녀와 Fox가 파리 상처 부위를 조사했을 때 줄기세포가 아닌 소위 배수체 세포가 주요 상처 치료자라는 징후를 발견했습니다. 천자 부위에서는 여러 개의 핵을 가진 초대형 세포가 빠르게 상처를 닫았습니다. “동시에 우리는 줄기세포와는 아무런 관련이 없는 같은 것을 발견했습니다.”라고 Fox는 회상합니다.

그 이후로 배수체 세포에 대한 두 과학자의 관심은 더욱 커졌습니다. 대부분 식물과 동물 세포는 이배체입니다. 게놈은 각 부모로부터 하나씩 두 세트의 염색체로 구성됩니다. 하나 이상의 추가 염색체 세트를 가지고 있는 배수체 세포는 한때 암 성장을 촉진하는 것으로 악명이 높은 해로운 변칙 개체로 여겨졌습니다. 그러나 이제 배수성은 초파리에 널리 퍼져 있으며 우리 몸에도 마찬가지라는 것이 분명해졌다고 Losick은 말합니다. 실제로 일부 데이터에 따르면 인간 심장 세포의 80%가 성인이 될 때까지 배수체로 태어나 태어날 때는 전혀 없었으나 증가했습니다.

배수체 세포가 흔하고 중요해 보이도록 등장함에 따라, 한때 모호했던 이 주제는 이제 암 연구자, 발생 생물학자, 진화 생물학자, 세포 생물학자와 농업 과학자들을 하나로 모으고 있습니다. Losick은 5월에 플로리다에 모인 약 150명의 연구원이 Polyploidy Across the Tree of Life 조직을 돕고 일반적으로 고립된 분야의 정보를 거래했습니다. 피츠버그 대학의 발달 생물학자인 Shyama Nandakumar는 “상호 관심의 양은 정말 놀라웠습니다.”라고 말합니다.

연구 노력으로 자연적으로 배수성을 유도하는 데 도움이 되는 여러 유전자가 밝혀졌는데, 이는 이것이 단순한 세포 사고가 아니라는 증거입니다. 연구자들은 배수체 세포가 식물 세포에서 심장까지의 조직 발달을 형성한다는 단서를 발견했습니다( 아래 사이드바 참조 ). 그리고 그들은 배수체 세포가 초파리와 같은 부상부터 인간의 폐, 간, 신장의 질병과 손상에 이르기까지 스트레스에 대처하는 모든 종류의 조직과 기관에 필수적인 반응이라는 증거를 모으고 있습니다. 배수체 세포는 “줄기세포의 대안”이라고 현재 듀크 대학교에 있는 Fox는 말합니다.

배수성은 개별 유기체뿐만 아니라 전체 종을 대처하는 방법일 수 있습니다. 식물의 약 30%는 완전 배수체입니다. 즉, 식물의 모든 세포는 조상에서 발견된 염색체 수의 두 배 이상을 가지고 있습니다. 예를 들어 여러 도롱뇽과 같은 소수의 동물도 마찬가지입니다. 진화생물학자들은 배수체 유기체가 이배체 유기체보다 경쟁에서 불리한 경우가 많다는 사실을 발견하여 이러한 특성이 지속하는 이유에 대한 의문을 제기합니다. 수백만 년 전에 게놈 복제가 발생한 시기를 정확히 지적함으로써 연구자들은 잠재적인 대답을 엿볼 수 있습니다. 배수성은 종들이 재앙적인 환경 변화를 견디는 데 도움이 될 수 있습니다. 모든 종류의 공간적, 시간적 규모에서 배수성은 “손상 반응”이라고 플로리다 대학의 식물 진화 생물학자인 더글러스 솔티스(Douglas Soltis)는 제안합니다.

거의 한 세기 동안 과학자들은 배수체 세포가 다양한 방식으로 발생할 수 있음을 인식해 왔습니다( 아래 그래픽 참조 ). 때로는 세포 분열이 중간에 중단되고, 복제된 DNA가 딸세포 간에 분열되지 않고 모세포에 갇히게 됩니다. 다른 시나리오에서는 세포가 융합하여 여러 개의 핵을 가진 단일 세포를 만듭니다. 각각의 경우 결과는 더 큰 셀입니다. “다배체가 됨으로써 [세포]는 물리적 특성을 변화시킵니다.”라고 Losick은 말합니다.

이 세포는 때때로 유해하여 화학요법 및 방사선 치료에도 불구하고 암이 발생하거나 지속하도록 돕습니다. 배수체 세포는 일부 조건에서 신장과 간을 손상할 수도 있습니다. 그러나 Losick과 Fox는 초파리 상처 연구에서 또 다른 역할을 발견했습니다. 유사한 발견을 찾기 위해 과학 문헌을 조사했을 때, 그들은 다른 그룹에서 장기가 손상된 후 간을 포함하여 질병에 걸리거나 스트레스를 받는 조직에 배수체 세포가 나타나는 것을 보았다는 사실을 알게 되었습니다. 그래서 두 사람은 초파리 시스템을 더 조사했습니다. 그들은 개별 세포의 배수체 세포 수와 핵 및 게놈 수가 상처 크기를 포함한 요인에 따라 다르다는 것을 발견했습니다.

가장 중요한 점은 염색체 배가 또는 세포 융합에 필요한 유전자를 조작하여 배수체 세포의 생성을 억제하면 상처가 치유되지 않는다는 것입니다. 2013년 카네기 그룹이 이 발견을 보고하기 전에도 Tulane 대학의 초파리 생물학자인 Wu-Min Deng은 상처 입은 초파리 난소에서 같은 현상을 보고했습니다. Fox는 이 출판물이 “재생 생물학의 새로운 개척”을 예고했다고 말했습니다.

 

염색체가 야생으로 변했다

대부분 종의 세포에는 잘 정의된 염색체 수(N)로 구성된 두 개의 일치하는 세트가 있습니다. 그러나 몇몇 프로세스는 일반적으로 2N 개의 셀에 추가 세트를 부여할 수 있습니다. 배수성(polyploidy)으로 알려진 이 상태는 세포의 모양을 변화시키고 세포에 새로운 특성을 부여할 수 있으며 때로는 새로운 종으로 이어질 수 있습니다.

Fox, Losick 등은 또한 세포가 치유에 어떻게 이바지하는지 기록했습니다. 초파리의 경우 매머드 세포 중 일부는 찔린 상처로 인해 생긴 공간을 빠르게 메우고, 다양한 유전자의 복사본을 여러 개 갖고 있어 치유 속도를 높이는 추가 단백질을 만들 수 있습니다. 예를 들어, 바늘 찌르기가 근육을 파괴하는 경우, 이 세포는 근육 수축을 돕는 미오신 단백질을 많이 생성합니다. Losick은 배수체 세포의 여분의 DNA가 정상적인 이배체 세포를 죽게 만들어 회복을 지연시키는 염증으로 인한 손상으로 인한 DNA 손상에 대한 저항성을 갖게 할 수도 있다고 Losick이 제안합니다.

독소로 인해 손상된 쥐의 신장과 탈수, 외상, 감염 또는 기타 스트레스를 받은 인간의 신장에서도 유사한 과정이 전개됩니다. 5월 회의에서 플로렌스 대학의 세포생물학자인 레티시아 데 키아라(Letizia De Chiara)는 자신과 플로렌스의 신장학자인 파올라 로마냐니(Paola Romagnani)와 함께 새롭고 큰 배수체 세포가 손상된 부위를 빠르게 집어삼켜 쥐의 신장 기능을 회복시키는 것을 관찰했다고 보고했습니다. 그녀와 동료들은 또한 장기가 점차 쇠퇴하고 있는 사람들의 신장 생체검사를 조사했습니다. 많은 배수체 세포가 그 신장을 채웠습니다. 급성 신장 손상에서 회복된 사람들의 경우 시간이 지남에 따라 그러한 세포 수가 감소했다고 그녀는 회의에서 보고했습니다.

손상 제어 작업이 완료되면 배수체는 이러한 초대형 세포의 축적이 해로울 수 있으므로 종료되어야 합니다. 예를 들어, 플로렌스 팀은 작년에 이것이 흉터와 만성 신부전으로 이어질 수 있다고 보고했습니다. 그러나 Losick의 대학원생 Loiselle Gonzalez는 특정 종류의 흉터 자체가 흉터 수를 조절하는 데 도움이 될 수 있음을 발견했습니다. 그녀가 상처 입은 파리의 흉터를 중단했을 때 배수체 세포가 계속 형성되었으며 상처가 완전히 닫히지 않았다고 5월 회의에서 보고했습니다. “섬유증을 포함한 흉터 같은 조직은 배수성을 수축하는 데 필요할 수 있습니다. “라고 Losick은 말합니다.

Losick은 초파리의 배수성을 제어하는 ​​데 도움이 되는 단백질을 확인했습니다. 이는 yes1 관련 전사 조절인자인 YAP1이라는 포유류 분자와 동등한 파리입니다. YAP1은 장기 크기를 조절하는 유전자를 조절하는 데 도움을 주는 것으로 알려져 있습니다. 또한, 곤충의 상처 치유에서 배수성을 자극하고 활동이 떨어지면 과정을 억제하는 것으로 나타났습니다. 플로렌스 팀은 YAP1이 쥐 신장에서 동일한 역할을 한다는 사실을 발견했습니다. Romagnani는 “ 초파리 (복부)와 포유류의 신장에서 매우 유사한 것을 볼 수 있다는 것은 정말 놀라운 일이었습니다….”라고 말했습니다.

쥐 연구에 따르면 적절한 시기에 YAP1을 억제하면 손상된 신장에 해로운 흉터가 발생할 가능성이 작아질 수 있다고 De Chiara는 말합니다. 그녀와 그녀의 동료들은 동물 모델에서 이러한 가능성을 조사하고 있습니다. 몇몇 생명공학 회사는 다른 목적으로 YAP1 경로를 표적으로 삼는 약물을 개발하고 있으며, 배수성의 단점을 방어하는 데도 도움이 될 수 있습니다.

배수체 세포를 표적으로 삼는 약물은 가장 파괴적인 효과 중 하나인 암세포가 치료 스트레스를 견딜 수 있도록 돕는 능력에 대응하는 데 도움이 될 수도 있습니다. 대부분 종양에서는 최소한 몇 개의 세포가 비분열 배수체 거대세포로 변하는데, 이 세포의 추가 유전 물질로 인해 화학요법이나 방사선 치료에 저항력이 생깁니다. 이 세포들은 또한 종양 부위를 떠나 신체의 다른 부분에 정착하는 능력을 향상하는 물리적 특성(운동성과 탄력성 증가)이 있는 것으로 보인다고 존스 홉킨스 의과대학 연구원들이 작년에 bioRxiv에 보고 했습니다.

또 다른 홉킨스 팀은 세포의 탄력성에 중요한 역할을 하는 것으로 보이는 다중단백질 복합체를 발견했습니다. 그들이 배수체 세포에서 복합체의 한 구성 요소인 CDK9라는 단백질을 억제했을 때 세포는 더 항암제에 노출되어도 살아남지 못했습니다. 이는 약물 저항성 암에 유혹적인 취약성을 시사한다고 회의에서 보고했습니다.

배수체 세포가 손상되거나 스트레스를 받은 조직에서는 단기 방문객을 환영하지만, 암에 머무르면 위협이 된다면 밀, 딸기, 설탕과 같은 작물을 포함한 일부 종에서 배수체가 여러 세대에 걸쳐 거의 모든 세포에서 지속하는 이유는 무엇입니까? 지팡이? 이들 종의 과거 대부분은 두 개 이상의 친척이 서로 교배했으며 이들의 게놈은 이배체로 돌아가는 대신 힘을 합쳤습니다. 때로는 이렇게 결합한 게놈이 다시 복제되기도 합니다. 밀에는 6개의 염색체 세트가 있습니다. 딸기는 8개 있어요. 성장과 영양분에 대한 주요 유전자의 다중 복사본은 곡물의 머리 밀도가 더 높고, 과일이 더 크고, 줄기가 더 크고 달콤한 결과를 가져올 수 있습니다.

이러한 특성은 인간 소비자를 기쁘게 할 수 있지만, 식물의 경우 “대부분은 아니지만 많은 전체 게놈 복제가 실제로 부적응적입니다”라고 겐트 대학의 진화 생물학자인 Yves Van de Peer는 말합니다. 예를 들어 배수체 식물은 더 많은 영양분이 필요하며 이배체 식물보다 느리게 자라는 것 같습니다. 그러나 이러한 특성은 지속하며 Van de Peer는 답이 스트레스에 대처하는 것이라고 믿습니다.

그와 그의 동료들은 어떤 패턴이 있는지 알아보기 위해 야생 식물 종의 게놈이 복제되는 시기를 찾아내기 시작했습니다. 그들은 이러한 중복 중 상당수가 약 6천6백만 년 전, 소행성이 지구에 충돌하여 대량 멸종을 일으켰을 때 발생했다는 사실을 발견했습니다. 이러한 추세는 수십 개의 추가 식물 게놈에 대한 추가 분석에서 유지되었으며, 이는 기후 변화 또는 빙하 기간 전체 게놈 복제의 추가적인 물결을 드러냈습니다.

“처음에는 [Van de Peer의 아이디어에 대해] 회의적이었습니다.”라고 Soltis는 말합니다. “그러나 그것은 시간의 시험을 계속 견디고 있습니다.” 예를 들어 Van de Peer 팀은 식물 생물학 연구에 자주 사용되는 속인 애기장대 (Arabidopsis) 의 일부 종은 지난 200만 년 동안 추운 날씨 동안 배수체가 되었다는 사실을 발견했습니다. 2019년, 하버드 대학교 진화생물학자 찰스 데이비스(Charles Davis)는 말피기알레스(Malpighiales)라고 불리는 열대 현화식물 그룹이 5천만 년 전 극심한 온난화 기간 전체 게놈 복제를 겪었다는 결론을 내렸습니다. 오늘날 그들은 약 16,000종으로 이루어져 있는데, 이는 배수성이 해를 끼치기보다는 도움이 되었음을 암시합니다.

이제 Van de Peer는 다중 게놈이 제공하는 증가한 유전적 유연성을 통해 배수체가 새로운 스트레스에 빠르게 적응하고 대부분의 정상적인 식물과 동물을 멸종시키는 재앙적인 사건을 극복할 수 있다고 믿습니다. 전체 게놈 복제의 패턴은 “다수체에 대한 단기적, 심지어 즉각적인 진화적 이점을 제안합니다”라고 Van de Peer는 말합니다.

회의에서 그는 그 아이디어를 뒷받침하는 컴퓨터 모델링과 실험 결과를 제시했습니다. 그의 팀은 디지털 유기체 떼를 만들었습니다. 여기에는 가상 바퀴를 활성화하고 유기체가 올바른 방향으로 움직이거나 특정 속도로 이동하거나 다른 유기체를 피하거나 접근하도록 하는 ‘유전자’가 부여되었습니다.

일부 떼에서는 개인이 하나의 “게놈” 사본을 갖고 다른 집단에서는 두 개를 가졌습니다. 두 유형의 적합성을 테스트하기 위해 Van de Peer는 개인이 디지털 “음식”을 찾기 위해 그리드를 따라 얼마나 잘 움직이는지 평가했습니다. 하나의 게놈을 가진 사람들은 연구자들이 식량을 부족하게 만들 때까지 훨씬 더 잘했습니다. Van de Peer는 “그런 다음 배수체는 더욱 극단적인 행동을 보이기 시작했습니다.”라고 말했습니다. 그들은 더 큰 발걸음을 내디뎠고, 더 많은 음식을 찾았으며, 심지어 경쟁자들을 잡아먹기 위해 함께 일했습니다. 결국, 단일 게놈 떼는 멸종되었습니다. 그는 2019년 PLOS ONE에서 이 연구를 통해 “스트레스가 많은 환경에서 복제된 게놈을 갖는 것이 좋은 일이라는 것을 확인했습니다”라고 보고했습니다.

“그들이 이배체 버전을 능가할 수 있다는 사실은 일종의 놀라운 실험입니다.”라고 Soltis는 말합니다. “분명 무슨 일이 일어나고 있는 것 같아요.”

이제 Van de Peer는 자신이 무엇을 알고 있는지 믿습니다. 시뮬레이션의 유전자는 상호 작용 네트워크를 형성했으며 Van de Peer는 유전자가 두 배인 유기체에서 네트워크가 더 많은 연결로 연결된다는 것을 발견했습니다. 그들은 유기체가 더 빠르게 움직이고, 더 멀리 점프하고, 예상치 못한 움직임을 하거나 더 복잡한 방식으로 다른 유기체와 상호 작용하는 것을 가능하게 했습니다.

그와 다른 사람들은 살아있는 유기체에서도 비슷한 일이 일어날 가능성이 있다고 믿습니다. Fox는 “염색체가 더 많으므로 서로 상대적으로 유전자의 양을 미세 조정하기 위해 돌릴 수 있는 손잡이가 더 많습니다.”라고 설명합니다. 이는 특정 단백질의 양을 늘리고 다른 단백질의 양을 줄이며 유기체의 행동, 생리학 또는 화학을 변화시킬 수 있습니다. 배수체 종은 “환경이 그들에게 던지는 모든 것에 적응할 준비가 되어 있습니다”라고 Losick은 덧붙입니다.

예를 들어 이배체 유기체가 이미 잘 적응된 안정적인 환경에서는 이러한 미세 조정의 대부분이 필요하지 않을 수 있습니다. 그러나 공룡을 죽이는 소행성이 충돌하여 산불로 인한 연기로 지구를 어둡게 만들었을 때 배수체는 생존할 수 있는 다재다능함을 가졌을 것이라고 Van de Peer는 제안합니다. “일반적으로 전체 게놈 복제는 진화의 막다른 골목입니다.”라고 그는 결론을 내렸습니다. “그러나 적절한 시기에 발생한다면 진화의 기회를 창출할 수 있습니다.”

이 아이디어를 테스트하기 위해 Van de Peer와 동료들은 개구리밥( Spirodela polyrhiza ) 이라고 불리는 작은 수생 식물을 선택했습니다. 그들은 세포 분열을 방해하는 화학 물질에 노출해 일부 개인의 배수성을 유도합니다. 그런 다음 연구자들은 이배체와 배수체 버전을 나란히 성장시켜 높은 염도 또는 높은 농도의 중금속과 같은 스트레스에 어떻게 대처하는지 추적합니다. 배수체 식물은 더 탄력적인 것으로 판명되었다고 5월 회의에서 그는 보고했습니다. 곧 그의 팀은 여러 세대의 개구리밥 서열을 분석하고 유전자 활동을 평가하여 배수체와 이배체 사이의 유전자 조절 네트워크가 어떻게 다른지 확인할 것입니다.

피츠버그 대학의 진화 생태학자인 Tia-Lynn Ashman과 Martin Turcotte도 개구리밥 개체군의 배수성을 연구했습니다. 배수체 식물은 이배체 식물보다 더 천천히 자라는 경향이 있었고 개체군 크기도 더 작았습니다. 그러나 그들은 더욱 다양한 미생물 생태계를 지원했다고 Ashman은 회의에서 보고했습니다.

그것은 배수성의 또 다른 유익한 결과일 수 있습니다. 점점 더 많은 연구자가 유기체의 미생물군집이 유기체의 생존에 도움이 된다는 사실을 인식하고 있습니다. 따라서 더욱 다양한 미생물군이 존재하면 숙주가 더 많은 종류의 음식을 소화하거나 다른 방식으로 회복력을 향상할 수 있습니다. 증가한 다양성은 “전 지구적 규모에서 볼 수 있는 더 넓은 생태학적 범위의 배수체에 대한 메커니즘을 제공할 수 있습니다”라고 Ashman은 제안합니다.

확실한 것은 배수체 세포가 비정상과는 거리가 멀고 부상, 질병 및 적대적인 환경의 스트레스에 대처하기 위한 생명의 주요 메커니즘 중 하나라는 것입니다. 플로리다 자연사 박물관의 식물 진화 생물학자인 파멜라 솔티스(Pamela Soltis)는 회의에서 “전체 게놈 배가가 단순히 세포의 모든 것을 두 배로 늘리는 것이 아니라 독특한 생물학을 보고 있다는 사실이 점점 더 많이 인식되고 있습니다”라고 말합니다.

이러한 깨달음은 박사후 연구원의 높은 기대치를 회상하는 Losick을 기쁘게 합니다. 그녀는 “이 새로운 분야에 참여하게 되어 기쁘다”라며 “자랑스럽다”라고 말했습니다.

번역 후 변형에 대한 범암 분석을 통해 단백질 조절의 공유 패턴이 밝혀졌습니다.

Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation

https://www.cell.com/cell/fulltext/S0092-8674(23)00781-X

하이라이트

  • 비지도 클러스터링을 통해 33개의 범암 다중 오믹 시그니처가 밝혀졌습니다.
  • PTM 조절 장애는 뚜렷한 DNA 손상 복구 메커니즘과 관련이 있습니다
  • 대사 단백질의 아세틸화 변화는 종양 면역 상태와 관련이 있습니다
  • Thr/Ser 키나제의 인산화는 근위부 아세틸화의 영향을 받습니다.

요약

번역 후 변형(PTM)은 정상 세포와 암세포 모두에서 세포 신호 전달 및 생리학을 조절하는 데 중요한 역할을 합니다. 질량 분석법의 발전으로 높은 처리량, 정확하고 민감한 PTM 수준 측정이 가능해 PTM 수준의 역할, 보급 및 누화를 더 잘 이해할 수 있습니다. 여기에서 우리는 11가지 암 유형에 걸쳐 PTM 프로파일을 가진 1,110명의 환자로부터 가장 큰 단백질 유전학 데이터 컬렉션을 분석합니다(국립 암 연구소의 임상 단백질 종양 분석 컨소시엄(CPTAC)의 10명). 우리의 연구는 특징적인 암 과정과 관련된 단백질 아세틸화 및 인산화 변화의 범암 패턴을 보여줍니다. 이러한 패턴은 인산화에 의해 DNA 복구가 조절되지 않는 암을 포함하여 다양한 암 유형의 종양 하위 집합을 나타냅니다. 아세틸화에 의한 면역 반응과 관련된 대사 조절의 변화, 아세틸화와 인산화 사이의 누화에 의한 키나제 특이성 영향, 히스톤 조절의 변형. 전반적으로 이 리소스는 PTM이 적용되는 풍부한 생물학을 강조하고 잠재적인 새로운 치료 방법을 제시합니다.

 

소개

종양에 대한 체계적인 유전체학 기반 연구는 종양 생물학에 대한 이해에 혁명을 일으켰습니다. 환자 치료에 큰 영향을 미쳤습니다. 그러나 많은 암은 여전히 ​​효과적인 치료법이 부족하거나 특성이 제대로 규명되지 않아 복잡한 생물학과 분자 및 표현형 이질성이 강조됩니다. 시료 처리 및 액체 크로마토그래피-탠덤 질량 분석법(LC-MS/MS)의 최근 발전으로 단백질 수준과 번역 후 변형(PTM)을 대규모로 정량화할 수 있게 되었습니다.

CPTAC(Clinical Proteomic Tumor Analysis Consortium)의 공동 노력으로 개별 암 유형에 대한 대규모 단백질유전체 데이터 세트가 생성되었습니다. 이 연구에는 모두 PTM이 포함되었으며 분자적 특징과 표현형 결과 사이의 격차를 해소하여 잠재적인 치료 취약성을 지닌 새로운 암 하위 유형을 식별하기 시작했습니다. 이러한 발전과 PTM이 세포 신호 전달을 조절하고 미세 조정하는 데 중요한 역할을 하고 있음에도 불구하고, 공유 패턴, PTM 간의 누화(예: 인산화, 아세틸화 등), 여러 PTM이 규제 네트워크를 형성하는 방식, 특히 암 유형 전반에 걸쳐 잘 이해되지 않은 상태입니다.

이전의 범암 게놈 연구에서는 다양한 암 유형에 걸쳐 재발성 유전자 및 경로 변경을 조사하면 암을 유발하는 근본적인 분자 현상에 대한 이해를 높일 수 있음이 입증되었습니다. 여기에서 우리는 게놈 연구를 확장하고 보완하기 위해 여러 암에서 변경되는 일반적인 번역 후 조절 메커니즘을 조사하기 위해 암 유형 전반에 걸쳐 공유되고 다양한 PTM 패턴을 식별하기 시작했습니다. 이를 위해 우리는 완전한 게놈, 전사체, 단백질체 및 PTM(인산화 및 아세틸화) 데이터를 갖춘 1,110명의 치료 경험이 없는 환자의 샘플을 포함하는 11개 연구의 데이터를 사용하여 조화된 범암 코호트를 생성했습니다(그림 1A ). 이를 통해 개별 연구의 제한된 표본 크기(환자 39~140명)로 인해 단일 코호트에서 식별할 수 없는 패턴을 검색할 수 있었습니다. 암 전체에 걸쳐 공유되고 조직 독립적인 패턴에 초점을 맞추기 위해 우리는 조화 과정의 일부로 각 데이터 유형의 조직별 효과를 회귀 분석했습니다.

우리는 암에서 조절 장애가 있는 것으로 알려진 (1) 특징적인 경로에 대한 분석을 집중했습니다. PTM에 의해 엄격하게 통제되며, DNA 손상 및 복구 경로, 세포 면역 대사 및 유전자 발현의 히스톤 수준 조절을 포함합니다. (2) 다양한 유형의 PTM 간의 잠재적 누화. PTM은 빠른 것부터 지속적인 것, 장기적인 것까지 다양한 잠재적 규제 효과를 가지고 있습니다. 면역 및 대사 반응에서 PTM의 일시적이고 가역적인 특성은 미세 환경의 변화에 ​​적응하는 데 필요한 빠른 반응을 가능하게 합니다. 반면, 히스톤 변형에 대한 PTM 효과는 세포 프로그램의 장기간 지속되는 조절에 영향을 미칠 수 있습니다. 실제로 암에서 비정상적인 히스톤 아세틸화는 종양 억제 인자를 비활성화하거나 종양 유전자를 활성화할 수 있습니다. DNA 복구 과정에서 인산화는 DNA 복구 단백질의 활성을 조절하는 데 중요한 역할을 합니다. PTM에 초점을 맞춘 분석은 특히 DNA 복구가 부족한 암에서 DNA 복구 환경을 더 잘 특성화할 수 있습니다. 마지막으로, 세린/트레오닌 인산화와 라이신 아세틸화는 진핵생물에서 가장 널리 퍼져 있고 보존된 PTM 중 하나입니다. 현재까지 대부분의 연구는 단일 PTM 유형이 세포 과정을 어떻게 조절할 수 있는지에 초점을 맞추었지만, 단백질이 여러 PTM 유형을 가지고 있다는 인식은 이들이 함께 작용하여 복잡한 규제 효과를 공동으로 나타낼 수 있음을 시사하며 그 중 대부분은 아직 탐구되지 않은 상태입니다.

전반적으로, 이것은 아세틸화와 인산화의 광범위한 조절과 암 유형 전반에 걸친 공유 패턴을 자세히 설명하는 최초의 범암 연구입니다. 함께, 우리의 결과는 추가 실험 검증 후 새로운 약물 표적을 식별하거나 암 생물학에 영향을 미치는 새로운 방법을 제안할 수 있는 암의 PTM 관리 프로세스에 관한 가설을 탐색하고 생성하는 풍부한 리소스로 구성됩니다.

결과(원문에서 확인 가능함)

  • Pan-cancer 데이터 세트 개요
  • 범암 PTM 환경
  • DNA 복구 결핍 종양에서 PTM 조절 장애의 메커니즘
  • 대사 경로의 PTM 조절은 종양 관련 면역 반응에 영향을 미칩니다
  • 암 관련 유전자에서 PTM에 의한 히스톤 조절의 변화
  • 암에서 단백질 인산화와 아세틸화 사이의 누화

논의

PTM은 신호 전달의 핵심 조절자이며 다른 많은 필수 기능 중에서 단백질 간 상호 작용, 단백질 안전성 및 위치 파악에 중요한 역할을 합니다. 이 연구에서 우리는 11가지 암 유형에 걸쳐 PTM을 종합적으로 조사하고 알려진 암 특징 프로세스(1) DNA 복구, (2) 면역 반응, (3) 대사, (4) 히스톤 조절 및 (5)에 대한 PTM의 기여를 강조했습니다. 우리는 암 유형 전반에 걸쳐 이러한 과정과 PTM 패턴의 공통점과 중요한 차이점을 지적했습니다. 이 풍부한 리소스를 통해 여기서 설명하는 PTM 작업을 넘어 암 유형 전반에 걸쳐 PTM에 대한 추가 조사가 가능해집니다.

HRD 및 MMRD와 같은 DNA 복구 결함은 종양 발달 전반에 걸쳐 체세포 돌연변이 패턴을 생성하여 주어진 복구 결함의 증거를 제공합니다. 중요한 것은 이러한 돌연변이 시그니처가 복구 경로의 현재 활동을 반드시 반영하는 것은 아니며, 이는 DNA 복구 유전자를 표적으로 하는 치료법(예: PARP 및 POLQ 억제제 등)에 대한 반응의 변화를 이해하는 데 적합할 수 있다는 것입니다. DNA 복구가 부족한 암에 대한 심층 분석은 인산화 중심 분석이 게놈 및 전사체 수준에서 감지할 수 없는 정보 패턴을 밝히고 특성화하는 능력을 강조했습니다. HRD 클러스터 분석을 통해 우리는 DNA 복구 단백질의 인산화의 중요한 차이가 저산소증의 심각도와 밀접한 관련이 있음을 발견했습니다. 우리는 만성 저산소증이 있는 HRD 종양에서 PARP1을 포함한 여러 DNA 복구 단백질의 활성이 감소하여 잠재적으로 PARP 억제제에 대한 반응에 영향을 미치는 것을 발견했습니다. MMRD 종양에 대한 우리의 단백질유전체학적 분석은 재발성 RAD50 미세부수체 삽입결실과 DSB 감지 및 신호 전달에 중요한 MRN 복합체의 세 가지 단백질 풍부도가 심하게 감소한 것과 연결되었습니다. 부위별 인산화 분석을 통해 우리는 DSB 복구 기능 장애에 대한 추가 증거를 확인했으며 이는 MMRD(즉, MSI) 암 치료법 개발을 위한 추가 방법을 제공할 수 있습니다.

일반적으로 면역 반응은 숙주가 직면한 특정 위협에 대한 각 반응을 맞춤화하기 위해 엄격하게 규제되므로 PTM이 달성할 수 있는 신속한 규제 변화가 필요합니다. 마찬가지로 세포 대사에도 같은 유연성이 필요하므로 PTM은 면역 반응과 대사 반응을 모두 조절하는 데 필수적인 역할을 합니다. 예를 들어, 이 두 과정은 FA 효소에 대한 PTM에 의한 지질 대사의 암세포 조절이 면역 반응에 영향을 미칠 수 있다는 증가하는 증거와 연결될 수 있습니다. 이 연구에서 우리는 아세틸화에 의해 유도되는 다양한 대사 표현형을 갖는 4개의 발현 기반 면역 클러스터를 확인했습니다. CLUMPS-PTM은 해당과정 관련 단백질인 ALDOA를 강조했습니다. 이 단백질은 ALDOA 활성 증가와 관련된 면역 핫 하위 유형의 변경된 인산화 및 아세틸화 부위의 중요한 클러스터를 모두 가지고 있습니다. 생쥐에서 ALDOA를 억제하면 폐 전이가 감소하고 생존 기간이 연장됩니다. Immuno-cool 하위 유형은 IFNγ 발현 감소와 밀접한 상관관계가 있는 FA 대사 활동의 증가를 보여주었는데, 이는 면역 억제에서 FA의 중요한 역할을 암시합니다. 최근 연구에 따르면 급성 골수성 백혈병(AML)에서 FA 산화를 억제하면 내성이 생긴 세포에서 베네토클락스 및 아자시티딘에 대한 민감성을 회복할 수 있는 것으로 나타났습니다. 이러한 결과는 암에서 지질 대사를 표적으로 삼으면 종양 세포가 더 높은 수준의 에너지를 생산하는 능력을 감소시킬 뿐만 아니라 면역 세포 침투 및 활성화에 더 도움이 되는 종양 미세 환경을 촉진할 수 있음을 강조합니다. 또한, 우리는 잠재적으로 아세틸화와 에너지 생성을 위해 세포에서 사용되는 아세틸 CoA의 가용성 감소로 인해 전사 활성 대사 경로와 히스톤 아세틸화 감소 사이의 연관성을 확인했습니다. 이 규정을 더 자세히 조사하려면 추가 연구가 필요할 것입니다.

마지막으로, 우리는 The Kinase Library를 사용하여 아세틸화와 인산화 사이의 누화에 대한 포괄적인 분석을 수행했습니다. 이 분석은 대부분의 세린/트레오닌 키나제가 인산화 부위에 근접한 아세틸화 리신을 선호하지 않음을 보여 주었으며(이웃 아세틸-/인산 부위의 유의하게 음의 상관관계가 있는 쌍으로 표시됨) 누화에 대한 책임이 있는 키나제를 예측할 수 있게 해줍니다.

요약하면, PTM은 종양 세포의 적응과 세포 내 및 환경 변화에 대한 반응의 필수적인 부분입니다. 암의 시작과 진행으로 이어지는 PTM 관리 프로세스에 대한 더 깊은 이해는 새로운 치료 목표를 밝히고, 기존 치료법에 대한 반응의 바이오마커를 식별하고, 암 생물학에 대한 지식을 확장할 수 있는 잠재력을 가지고 있습니다.

 

연구의 한계

게놈 기반 범암 연구는 새로운 암 유발 유전자와 공유된 조절 장애 경로를 발견하고 실행 가능한 치료 목표를 식별하는 데 매우 귀중한 자원임이 입증되었습니다. 우리의 단백질유전체학 범암 연구는 11개 종양 유형에 걸쳐 1,110개의 샘플로 제한되었으며, 더 많은 사례와 더 많은 암 유형을 포함하는 대규모 연구가 암의 근본적인 단백질유전체학 메커니즘을 식별하는 힘을 높일 것으로 기대합니다. 이 연구에 설명된 분석은 모두 대량 종양 물질을 기반으로 합니다. 단일 세포 및 공간 전사체 분석과 유사하게, 단일 세포 단백질체학, 공간 단백질체학, 레이저 포착 현미해부를 포함한 기술 종양의 이질성과 특정 세포 유형이 암에 미치는 영향에 대한 더욱 귀중한 통찰력을 제공할 가능성이 큽니다. PTM 누화에 대한 포괄적인 PTM 중심 연구 및 분석이 새로운 분야이지만 몇 가지 단점은 주목할 가치가 있습니다. (1) 현재 질량 분석법 분석은 PTM 간의 누화 분석을 수행하는 능력을 제한하는 상대적으로 높은 위음성 비율을 가지고 있습니다. (2) PTM 간의 누화 관계를 완전히 설정하려면 2개 이상의 PTM을 동시에 감지하기 위한 이중 MS 검색이 필요합니다. (3) 인산화 데이터베이스 및 키나제 예측 도구가 점점 늘어나고 있지만, 병렬적인 포괄적인 아세틸화 데이터베이스 및 도구는 현재 부족하며 본 연구에서 보고된 많은 아세틸화 부위의 기능적 효과는 아직 탐구되지 않고 있습니다.

https://simagebank.net/wp/5606/

https://simagebank.net/wp/5627/

https://simagebank.net/wp/5656/

https://simagebank.net/wp/5887/

https://simagebank.net/wp/5919/

https://simagebank.net/wp/5940/

https://simagebank.net/wp/6038/

범암 단백질 유전체학은 발암성 요인을 기능적 상태에 연결

Pan-cancer proteogenomics connects oncogenic drivers to functional states

https://www.cell.com/cell/fulltext/S0092-8674(23)00780-8

  • 다중 오믹 클러스터는 10가지 암 유형에 걸쳐 공유된 발암성 동인 경로를 밝힙니다.
  • 유전적 변화는 변경된 종양 특이적 단백질-단백질 상호작용과 상관관계가 있습니다
  • cis / trans 효과 및 키나제 활성은 운전자 이질성과 약물 가능성을 보여줍니다.
  • 게놈 드라이버와 단백질체 통합으로 뚜렷한 암 특징 패턴 해결

암 유발 요인은 종양 발생을 유발하는 주요 유전적 이상을 의미합니다. 그러나 정확한 분자 메커니즘은 아직 충분히 이해되지 않았습니다. 여기에서 당사의 다중 오믹스 범암 분석은 중요한 시스 효과와 원위 트랜스를 식별하여 암 유발 요인의 영향에 대한 통찰력을 밝혀냅니다.-RNA, 단백질, 인단백질 수준에서 효과를 정량화합니다. 두드러진 관찰에는 단백질 상호작용 네트워크의 재배선과 점 돌연변이 및 복제 수 변경의 연관성이 포함되며, 특히 대부분의 암 유전자는 서열 기반 키나제 활성 프로파일로 표시되는 유사한 분자 상태로 수렴됩니다. 예측된 신생항원 부담과 측정된 T 세포 침윤 사이의 상관관계는 면역요법에 대한 잠재적인 취약성을 시사합니다. 암 특징의 패턴은 균일한 것부터 이질적인 것까지 다양한 다유전성 단백질의 풍부함에 따라 다릅니다. 전반적으로, 우리의 연구는 개별 암 유형을 연구하는 한계를 뛰어넘어 발암성 요인의 기능적 상태와 암 발병과의 연관성을 이해하는 데 있어 포괄적인 단백질 유전체학의 가치를 보여줍니다.

범암, 발암성 드라이버, 치료 표적, 단백질체학, 단백질 유전체학, 인단백질체학, 단백질 복합체, 암 특징, CPTAC

소개

암은 주로 종양 억제 유전자(TSG)와 원암유전자의 유전적 동인 돌연변이에 의해 시작됩니다. 유전자의 돌연변이 재발을 포함하여 유전자를 암 유발 요인으로 정의하기 위해 여러 측정 기준이 고려됩니다. 기능성 단백질 도메인, 발암성 돌연변이에 대한 개별 아미노산 핫스팟, 해로운 돌연변이의 누적, 또는 단백질 구조의 체세포 돌연변이의 3차원 클러스터링. 이러한 기준을 암 유전체학 데이터의 대규모 집단에 적용하면 최근 몇 년간 암 유전자 목록과 예상되는 동인 돌연변이가 늘어났습니다. 이러한 돌연변이가 어떻게 기계적으로 종양 형성을 “추진”하는지 아직 불완전하게 이해되어 있습니다.

임상 단백질체학 종양 분석 컨소시엄(CPTAC)은 전체 엑솜 및 전체 게놈 시퀀싱, DNA 메틸화, RNA-seq, 포괄적인 단백질체학 및 인단백질체학 등 단백질 유전체학 스펙트럼 전반에 걸쳐 데이터를 통합하여 암의 기본 분자 메커니즘에 대한 이해를 가속했습니다. 현재까지 10가지 암 유형에 걸쳐 1,000건 이상의 사례에 대한 광범위한 데이터가 생성되었습니다. 난소 고급 장액성 암종(HGSC), 투명 세포 신장 세포 암종 (ccRCC), 두경부 편평 세포 암종(HNSCC), 폐 편평 세포 암종 (LSCC), 자궁체내막암종(UCEC), 폐 선암종(LUAD), 췌장관 선암종(PDAC), 교모세포종(GBM), 및 유방암종(BRCA). 다양한 오믹스 층의 변화에 ​​대한 조사를 통해 체세포 동인 돌연변이의 영향을 생물학적 구조와 기능의 단위인 단백질로 추적할 수 있습니다.

범암 연구는 다양한 암의 분자 특성을 정의하는 데 중점을 둡니다. 여기에서 우리는 이전의 유전체학 중심의 범암 연구를 확장합니다. 암 유발 요인의 6가지 중요한 측면을 설명하기 위해 단백질체 층을 통합함으로써: (1) 범암 게놈 및 후생 유전체 요인 빈도, 독점성 및 동시 발생; (2) 드라이버 변경이 RNA, 단백질 및 번역 후 변형(PTM)에 미치는 영향; (3) 단백질 복합체에 대한 운전자 변경의 효과; (4) 발암 경로의 필수 단백질 및 인산화 수준 변화; (5) 실행 가능한 운전자 변경과 종양 미세환경(TME)의 연관성; (6) 암 특징의 렌즈를 통해 단백질 풍부도에 대한 체세포 동인의 결합 효과. 우리의 연구 결과는 특히 명확한 게놈 표적이 없는 경우 발암 동인을 해독하는 데 있어서 통합적 단백질 유전체 분석의 잠재력과 잠재적인 임상적 유용성을 보여줍니다.

 

결과(원문에서 확인 가능함)

  • 운전자 변경 및 관련 다중 오믹 클러스터의 범암 단백질 유전학 환경
  • 단백질 유전체학 분석을 통해 암 돌연변이의 cis 효과의 이질성이 밝혀졌습니다.
  • 단백질 공변량 분석을 통한 변경된 단백질단백질 상호작용의 추론
  • CPTAC 코호트 전체에서 암 유전자의 체세포 돌연변이의 트랜스 효과
  • 종양과 정상 인접 조직 간의 비교 분석을 통해 발암 경로의 주요 단백질 변화를 식별합니다.
  • 면역원성 신생항원 및 약물 사용 가능한 키나제에 대한 체세포 돌연변이의 영향
  • 통합 다중 게놈 채점은 체세포 변화가 암 특징을 어떻게 변경하는지에 대한 증거를 제공합니다.

 

논의

높은 처리량의 게놈 분석을 통해 가속화된 발암성 동인의 발견과 기능적 특성화는 발암에 대한 기계론적 이해를 발전시켜 보다 효과적인 치료법으로 이어졌습니다. 처음에는 표적 치료법이 특정 종양 유형으로 제한되었습니다. 그러나 다양한 암에 걸쳐 공유되고 치료적으로 실행 가능한 동인이 발견되면서 종양 유형에 구애받지 않는 FDA 약물 승인이 이루어졌습니다. 그 후, FDA는 임상적으로 실행 가능한 변종을 밝히기 위해 광범위한 유전자 패널 테스트를 승인했습니다. 특정 변경이 표적 치료법과 일치하는 경우. 이러한 발전은 범암 동인의 분자적 토대에 대한 분석을 촉발했습니다. TCGA 범암 아틀라스 다양한 종양 유형의 분자 게놈 데이터를 통합하여 새로운 통찰력을 제공하기 위한 초기 프레임워크를 나타냅니다. 이는 또한 분자 데이터의 추가 계층에 걸쳐 드라이버 변경의 기능적, 기계적 및 표현형 상관관계의 특성화를 확장해야 할 필요성을 강조했습니다.

여기에서 우리는 게놈 및 전사체 데이터와 통합된 10가지 암 유형의 단백질체학 및 인단백질체 판독 값을 사용하여 CPTAC 코호트 전체에 걸쳐 5,443개의 추정 운전자 변경의 범암 결과를 평가했습니다. 우리의 단백질 유전체학 분석은 개별 단백질부터 암 특징까지 발암성 돌연변이의 분자 메커니즘에 대한 통찰력을 제공하여 잠재적으로 새로운 치료 방법을 밝힙니다. 암 단백질체가 어떻게 형성되는지 정확하게 분석하기 위해 우리는 같은 단백질에 대한 효과(시스 효과 )부터 시작하여 단백질 상호작용 및 복합체로 이동하여 전체 트랜스를 포함한 (포스포-)프로테옴-효과 및 다유전적 예측 프레임워크. 암에서 단백질-단백질 상호작용(PPI)의 재배선을 평가하기 위해, 우리는 PPI의 간접적인 판독으로 proteomic co-expression 데이터를 사용했습니다. 우리는 암 유형이나 운전자 변경에 따라 다른 후보 PPI를 찾았습니다. 흥미롭게도 많은 드라이버가 PIK3R1-PIK3CA, SMAD4-SMAD2 및 PPP2R1A-PPP2R2A를 포함하여 알려진 상호작용 단백질 간의 인터페이스에서 드라이버 변경을 표시하는 것으로 나타났습니다. 중요한 것은 RNA 데이터를 사용한 유사한 분석으로 인해 단백질 수준에서 검출된 PPI 효과의 하위 집합만 산출되었으며, 이는 단백질체학 분석의 중요성을 강조합니다. 네트워크 의학의 새로운 역할을 고려할 때, 우리는 돌연변이를 PPI 네트워크와 간접적으로 연관시키기 위해 범암 단백질체학 데이터를 사용하는 것이 도움이 될 것이라고 믿습니다.

운전자 이벤트의 트랜스 효과를 사용하면 경로의 다양한 암 유전자가 유사한 분자 지문을 표시하는 경향이 있음이 밝혀졌습니다. 이는 NFE2L2 와 KEAP1 , KMT2B 와 CREBBP 와 같이 분자 효과가 유사하다는 것을 의미합니다. 이러한 분자 수렴은 발암성 동인의 상당 부분의 상호 배타성을 설명합니다. 그러나 우리는 분자 지문이 음의 상관관계가 있는 경우도 발견했으며, 이는 종종 EGFR 및 STK11, CDH1 및 TP53 또는 EGFR 및 KRAS 와 같은 상호 배타적인 구동 유전자와 중복됩니다. 한 유전자의 돌연변이가 두 번째 유전자의 돌연변이가 종양 발생과 양립할 수 없는 상태로 세포를 이동시키기 때문에 이러한 유전자 쌍은 상호 배타적이라고 생각할 수 있습니다. 이들 유전자( EGFR 및 STK11 )는 발암적으로 수렴하고 중복되기보다는 다양하게 호환되지 않습니다. 이러한 다양한 비호환성은 폐암의 EGFR 및 KRAS에서 볼 수 있듯이 합성 치명적인 취약성을 나타낼 수 있습니다. 상반되는 유전자를 활성화함으로써 이러한 현상을 이용하는 약물이 고려될 수 있다. 따라서, EGFR 돌연변이 및 STK11 / KRAS 돌연변이 종양이 반대 세트의 키나제를 활성화하는 방법을 보여주는 키나제 라이브러리의 결과는 이러한 약물 표적을 제공할 수 있습니다.

프로테옴에 대한 종양 게놈 변이의 누적 영향을 조사하기 위해 우리는 단백질 풍부도를 예측하도록 훈련된 다유전자 예측 프레임워크인 C3PO를 구축했습니다. 예측 능력은 현재 세포 가소성으로 인해 전 세계 단백질체 환경의 약 27%로 제한되어 있습니다. 및 TME로 인한 전사체 변동. 그런데도, 이 도구를 사용하면 공간과 시간에 걸쳐 종양의 단백질 특징 가변성에 대한 게놈 기여도를 평가할 수 있습니다.

요약하면, 이 연구는 암의 기능적 상태에 대한 발암성 요인의 결과를 체계적으로 평가하기 위해 단백질체학이 제공한 중요한 통찰력을 강조합니다. 앞으로 PTM과 대사체의 광범위한 특성화를 통해 운전자 변경이 E3 유비퀴틴 리가제와 같은 단백질의 활동을 어떻게 교란하는지 추가로 밝힐 수 있습니다. 또한, 단세포 단백질체학(Single-cell proteomics)을 적용하여, 공간 단백질체학, 환자당 다중 종양 내/종양 간 샘플, 종양 이질성 및 TME와의 상호작용에 대한 단백질체 기여가 더 포괄적으로 설명될 수 있습니다. 마지막으로, 치료 전 및 치료 후 샘플에 단백질체학을 결합하는 임상 시험은 치료법에 대한 반응 및 저항성의 결정 요인을 밝혀내고 약물 작용과 더 직접적으로 관련된 수준인 단백질체에서 복합 치료에 대한 정보를 제공할 수 있습니다. 이는 임상적으로 구현 가능한 단백질 유전체 패널로 이어질 수 있습니다. 우리의 연구 결과는 프로테옴이 발암성 동인의 유전자형과 기능적 상태 사이의 빠진 연결고리임을 뒷받침합니다.

 

연구의 한계

범암 단백질 유전체학 연구는 이전에 CPTAC 컨소시엄 주력 연구의 일부로 개별적으로 분석된 10가지 종양 유형으로 구성되었습니다. 이 코호트는 세 가지 여성 특정 암인 BRCA, HGSC 및 UCEC를 포함하여 매우 이질적이지만 가장 흔한 남성 암인 전립선 선암종은 아닙니다. 또한, GBM은 나머지 코호트와 비교해 상대적으로 덜 흔하고 생물학적으로 더 뚜렷한 종양 유형을 나타냅니다. 추가로 계획된 코호트는 코호트 구성의 이러한 한계를 개선할 것입니다. 이 연구에서 종양 중 일부는 암과 밀접하게 관련된 세포 계통으로 구성된 동족 NAT를 가지고 있습니다. 다른 사람들에게는 이것이 불가능했습니다. 약물 민감도에 대한 범암 분석은 세포주기 관련 단백질에 초점을 맞춘 것으로 보이며, 이는 암의 핵심 특징을 치료적으로 표적으로 삼으려는 지역사회의 관심으로 상당한 동기가 부여되었습니다. 종양에서 키나아제의 활성이 증가한다는 사실을 발견하면 잠재적인 약물 표적이 될 수 있지만, 가능한 치료 창을 설정하려면 정상 조직에서 해당 키나아제의 필수성에 대한 신중한 고려가 필요합니다. 그런데도, 다른 특징 표현형에 대한 범암 단백질체 판독은 아직 치료학적으로 유익할 수 있으며 향후 연구에서 심층적인 평가가 필요할 것입니다.

08 유전 정보와 염색체

09 사람의 유전

10 사람의 유전병

06 유전 물질

07 유전자 발현

08 유전자 발현의 조절

12 생명 공학 기술과 인간 생활

 

토양 생물다양성 열거

토양 생물다양성 열거

Enumerating soil biodiversity

https://www.pnas.org/doi/10.1073/pnas.2304663120

 

중요성

토양 유기체는 식품, 섬유질, 인간 및 지구의 건강을 위해 우리가 의존하는 고유한 기능을 중재합니다. 토양 생명의 중요성에도 불구하고 토양 생물 다양성에 대한 정량적 평가가 부족하여 토양 생명 보호, 보존 및 복원의 중요성을 옹호하기가 어렵습니다. 여기에서 우리는 토양이 미생물에서 포유류에 이르기까지 모든 것을 포함하여 생명체의 59%의 고향일 가능성이 있음을 보여줍니다. 우리의 열거는 이해당사자들이 생물다양성 위기에 직면한 토양을 보다 정량적으로 옹호할 수 있도록 합니다.

 

초록

토양은 생명 나무 전체에 걸쳐 다양한 유기체의 거대한 서식지이지만 얼마나 많은 유기체가 토양에 살고 있는지는 놀랍게도 알려지지 않았습니다. 토양 생물다양성을 열거하려는 이전의 노력은 특정 유형의 유기체(예: 동물)만 고려하거나 토양에 사는 종과 다른 서식지를 구분하지 않고 다양한 그룹에 대한 값을 보고했습니다. 여기에서 우리는 토양이 지구에 있는 종의 59 ± 15%에 서식할 가능성이 있음을 보여주기 위해 생물다양성 문헌을 검토했습니다. 따라서 우리는 이전 추정치보다 약 2배 더 큰 토양 생물 다양성을 추정하고 가장 단순한(미생물) 유기체에서 가장 복잡한(포유류) 유기체까지 대표를 포함합니다. Enchytraeidae는 토양에서 가장 많은 종의 비율(98.6%)을 가지고 있으며, 그 다음으로 균류(90%), Plantae(85.5%) 및 Isoptera(84.2%)가 있습니다. 우리의 결과는 토양이 가장 생물 다양성이 높은 단일 서식지임을 보여줍니다. 토양 생물다양성에 대한 이 추정치를 사용함으로써 우리는 인류세의 중심 목표로서 토양 유기체의 보존과 복원을 보다 정확하고 정량적으로 옹호할 수 있습니다.

 

Daily briefing: More than half of all life on Earth lives underground

https://www.nature.com/articles/d41586-023-02542-4