카테고리 보관물: 뇌질환

정신 건강 장애 관리에서 운동의 역할: 통합 검토

The Role of Exercise in Management of Mental Health Disorders: An Integrative Review

Annu Rev Med. 2021 Jan 27; 72: 45–62.

Patrick J. Smith and Rhonda M. Merwin

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020774/

의 간단 번역입니다.

 

초록

방대하고 증가하는 증거는 신체 활동(PA)이 정신 건강 장애 관리에 치료적 약속을 할 수 있음을 시사한다. PA를 정신 건강 결과와 연결하는 대부분 증거는 유산소 운동 훈련이 우울증에 미치는 영향에 초점을 맞추었지만, 점점 더 많은 연구가 불안 및 외상 후 스트레스 장애 치료에서 유산소 및 저항 운동 패러다임의 효능을 뒷받침합니다. PA와 정신 건강을 연결하는 풍부한 증거에도 불구하고 정신 건강 치료로서의 운동 훈련의 사용은 불확실성의 세 가지 중요한 원인으로 인해 제한적입니다: (a) 여러 정신 건강 영역 내에서 운동 치료에 대한 반응의 큰 개인차; (b) 치료적 이익을 위해 항상 달성되는 것은 아니지만 지속적인 PA 참여의 중요성; (c) 추정 치료 메커니즘의 상대적 중요성에 대한 의견 불일치. 운동 중재 및 정신 건강 결과에 대한 치료 데이터 검토는 주로 건강 신경 과학 프레임워크 내에서 우울증과 불안에 중점을 둡니다. 이 개념적 틀 내에서 신경 생물학적 및 행동 메커니즘은 정신 건강 결과에 영향을 미치는 주요인지 및 행동 과정에 부가 또는 시너지 효과를 미칠 수 있습니다. 따라서 우리는 (a) 신경 가소성을 향상하는 신경 생물학적 메커니즘과 (b) 자기 조절 기술의 행동 학습의 큰 영향을 통합하여 치료 이질성의 원천을 강조합니다. 동적 신경 생물학적 메커니즘과 행동 메커니즘 사이의 상호 관계를 이해하면 개인화된 정신 건강 치료를 알리고 왜 그리고 누구를 위해 운동이 정신 건강 결과를 개선하는지 명확히 하는 데 도움이 될 수 있습니다. 이 검토는 정신 건강 혜택을 최적화하기 위해 치료 접근 방식을 개선하기 위해 개인차를 활용하는 향후 연구에 대한 권장 사항으로 마무리됩니다.

 

키워드 : 운동, 신체 활동, 자기 조절, 인지 제어, 실행 기능, 영향 조절, 행동 활성화

 

신체 활동과 정신 건강을 연결하는 역학적 증거

수많은 역학 연구에 따르면 신체 활동(PA)이 적거나 좌식 행동에 더 많은 시간을 할애하면 정신 건강이 좋지 않을 위험이 더 큽니다. 1.2 백만 명의 미국 성인을 대상으로 한 최근 연구에서 참가자가 수많은 배경 및 인구 통계 학적 요인에 걸쳐 일치 한 결과, 운동한 개인은 비 운동자와 비교해 정신 건강 기능이 더 좋다고 보고했습니다. 특정 정신 건강 상태에 초점을 맞춘 전향적 연구에서도 유사한 결과가 보고되었으며, 이는 습관적인 PA가 다양한 정신 건강 상태의 발병을 예방할 수 있음을 시사합니다. 예를 들어, 거의 267,000명의 개인에 대한 49개의 전향적 연구에 대한 최근의 메타 분석은 연령 그룹에 걸쳐 우울증 발병 확률 감소와 관련된 높은 수준의 PA가 [평균 비율(OR) = 0.83, 95% 신뢰 구간(CI) 0.79–0.88]임을 보여주었다. PA는 또한 80,000명 이상의 개인을 대상으로 한 최근의 메타 분석에서 불안 증상(OR = 0.87, 95% CI 0.77–0.99)과 불안 장애(OR = 0.66, 95% CI 0.53–0.83)가 발생할 가능성이 작은 것과 전향적으로 관련이 있다.

 

습관적인 PA가 정신 건강 상태의 발달에 대한 보호 역할을 한다는 개념은 더 많은 양의 PA가 정신 건강 문제의 위험을 점진적으로 낮추는 것과 관련이 있다는 데이터에 의해 더욱 강화된다. 다양한 운동 양식에 걸쳐, 흡연(OR = 0.67, 95% CI 0.61–0.75)과 같은 수많은 사회적, 의학적, 행동적 교란 요인을 설명한 후에도 더 큰 PA와 정신 건강 기능 사이에 선량-반응 연관성이 있는 것으로 보인다. 적당한 수준 또는 낮은 수준의 건강을 가진 사람들은 고도로 건강한 사람들에 비해 23%와 47% 더 높은 정신 건강 문제에 걸릴 위험을 나타내며, 유산소 운동과 저항 운동의 추가적인 이점을 가지고 있다. 함께, 역학적 증거는 더 큰 습관성 PA가 더 나은 정신 건강 기능과 관련이 있다는 강력한 증거를 제공한다. 본 검토의 목적상, 운동은 계획적이거나 의도적인 훈련 활동으로 정의되며, PA는 여가 활동도 포함한다.

 

운동 훈련 및 정신 건강 : 실험적 증거

운동에 대한 무작위 시험의 결과는 일반적으로 호의적이지만 관찰 결과보다 더 혼합되어 있습니다. 여러 메타 분석 연구에서는 주로 유산소 운동뿐만 아니라 저항 훈련과 같은 운동 훈련의 영향을 조사했으며, 연구 품질, 기간 및 비교 그룹 선택을 포함한 방법론적 고려사항에 따라 다양한 정도의 효능을 보였습니다. 대부분의 근거는 운동, 특히 유산소 훈련이 주의력 조절 조건과 비교해 우울증 및 불안 관련 결과를 개선하며 치료 효과 크기는 기존 약물 요법 접근법과 유사하다는 것을 시사합니다. 유산소 운동 시험은 일반적으로 중재가 없는 경우[효과 크기(ES) = 1.24] 또는 기존 통제 조건(ES = 0.68)과 비교해 중간 정도에서 큰 개선을 보고했으며 표준 심리적 또는 약리학적 접근에 필적하는 개선을 보였습니다. 중요하게도, 운동 훈련의 효과는 시간이 지남에 따라 감소하는 경향이 있으며 일반적으로 후속 조치 (ES = 0.22) 에서 중요하지 않으며, 치료 효과는 적극적인 치료를 중단한 후에도 운동을 계속하는 사람들 사이에서만 지속합니다. 저항 훈련 패러다임을 조사한 연구는 적지만 기존 데이터에 따르면 저항 훈련은 시험 전반에 걸쳐 상당한 이질성이 있음에도 불구하고 우울 증상 (ES = 0.66, 95% CI 0.48–0.83)을 개선하는 것으로 나타났습니다. 운동 훈련은 또한 2-3 개월 동안 기존의 외래 환자 치료 접근법의 효능을 향상시키는 추가 요법으로 조사되었습니다 (ES = -0.79, 95% CI -1.01 –0.57).

 

흥미롭게도 훈련의 용량-반응 효과에 대한 증거는 관찰 결과보다 덜 강력합니다. 상대적으로 소수의 연구가 개선의 정도를 훈련의 강도 또는 기간과 연관시킵니다. 또한, 시간 경과에 따른 지속적인 치료 반응을 조사한 결과 다양한 정신 건강 상태의 완화와 관련된 가장 중요한 요소는 초기 개입 할당에 관계 없이 시간이 지남에 따라 운동 유지 정도이며, 지속적인 운동 참여는 미국 심장 협회의 권장 활동 수준인 주당 150분에 밀접하게 해당하는 혜택 임계값을 보여줍니다. 요약하면, 운동 훈련은 기존의 심리 치료 및 약리학적 접근에 필적하는 정신 건강 기능에 잠재적으로 큰 영향을 미치는 것으로 보입니다. 그러나 운동 훈련의 효과는 환자 집단과 훈련 방식에 따라 다르며 장기적인 정신 건강 혜택은 지속적인 PA 참여에 따라 달라집니다. 따라서 치료 반응 및 운동 유지의 메커니즘을 이해하는 것은 임상 치료로서 운동의 궁극적인 효능에 매우 중요합니다.

 

트랜스 진단 메커니즘

최근 연구는 상호 관련된 행동 및 신경 행동 영역의 통합을 포함하여 운동이 정신 건강 결과를 향상할 수 있는 초 진단 메커니즘을 조사하기 시작했습니다. 예를 들어, 최근의 문헌 종합은 신경 퇴행성 장애 및 우울증 환자 샘플에 걸쳐 치료의 정서적 및 인지적 메커니즘을 통합하기 시작하여 운동이 우울 증상 (ES = 0.78)을 개선하고 약한 용량 반응 효과 (표준화된 베타 = 0.007, p = 0.012). 우울증의 개선은 인지 제어의 행동 마커 (ES = 0.24)의 개선과 병행되었으며, 높은 수준의 이질성이 있었습니다. 방법론적 변이가 이질성의 원인으로 빈번하고 적절하게 식별되는 반면, 운동이 정신 건강 결과에 미치는 영향도 신경 행동 장애의 존재와 유형에 따라 달라지는 것으로 보입니다.

 

진단 치료 이질성의 예시적인 예는 후기 우울증 (LLD) 및 / 또는 혈관 우울증이 있는 개인의 운동 사용입니다. 이 개인은 표면적으로 같은 진단 기준을 충족하지만, 우울증이 있는 젊은 개인이나 초기 첫 우울 에피소드가 있는 개인에 비해 기존 치료 접근 방식보다 상당히 열악한 치료 결과를 보여줍니다. LLD가 있는 개인은 우울증이 조기에 발병한 개인보다 심혈관 질환 위험 요인, 백질 고강도 및 실행 기능 장애로 대표되는 동반 이환 인지 기능 장애를 가질 가능성이 더 큽니다. 이 환자들의 낮은 치료 반응에도 불구하고, 정신 운동 활성화는 중요한 보호 요소인 것으로 보이며, 치료 혜택의 후속 지속성을 예측합니다. 이 인구에서 운동 훈련의 효과는 이질적이었습니다. 일부 대규모 다중 사이트 시험은 LLD 샘플에서 운동의 이점을 찾지 못했습니다. 그런데도 9건의 시험과 1,308명의 참가자를 대상으로 한 최근 메타분석에서 운동 훈련은 우울 증상을 줄이는 데 중간 정도 효과적인 것으로 나타났으며(ES = 0.64, 95% CI 0.27–1.01), 연구 전반에 걸쳐 상당한 이질성이 있었습니다. 후속 분석에 따르면 노인과 치매 환자를 대상으로 한 선별된 시험 모두에서 유리한 운동 효과에 대한 증거에도 불구하고 더 큰 연령, 인지 장애 및 우울 증상의 중증도가 모두 치료 반응 이질성에 이바지했습니다. 이러한 분석은 일부 개인에서 관찰된 치료 반응 부족이 노인성 우울증 또는 LLD가 있는 개인의 보상 시스템 경로에서 손상의 유병률이 더 높기 때문일 수 있음을 시사했습니다. 운동 훈련과 정신 건강 결과를 연결하는 기존의 증거는 운동이 광범위한 변화로 유익한 효과가 있음을 시사하지만, 운동이 누구에게 왜 유익한지를 설명하는 설명 연구가 부족합니다.

 

운동 훈련 및 정신 건강 : 설명 메커니즘

운동을 정신 건강과 연결하는 문헌을 조사한 결과 운동 훈련은 광범위한 정신 건강 결과에 유익하지만, 치료 혜택의 강도는 인구와 훈련 방식에 따라 다른 것으로 보입니다. 현재의 문헌 기반은 치료 개선에 관한 가설을 구성하는 데 유용한 세 가지 중요한 기계론적 가설을 갖는 것으로 특징 지어질 수 있습니다: (a) 정신 건강은 운동의 신체적 / 쾌락적 효과와 관련하여 개선된다, (b) 운동은 신경 생물학적 메커니즘을 통해 정신 건강을 향상한다. 운동은 변화의 행동 메커니즘 (예: 자기 조절 기술 및 자기 효능감)을 배양하는 수단입니다. 우리는 운동 훈련이 신경 생물학적 및 행동 학습 메커니즘의 시너지 효과를 통해 정신 건강을 향상할 가능성이 있다고 주장합니다(그림 1). 이 프레임워크 내에서 훈련은 적응 학습에 중요한 신경 생물학적 시스템과 정서적 및 인지적 제어 과정을 개선하여 강화의 “선순환”을 통해인지 및 정서적 반응의 조절에 시너지 효과를 가져옵니다.

 

그림 1

운동 훈련이 정신 건강 결과를 향상하는 신경 생물학적 및 행동 메커니즘을 통합하는 개념적 모델.

 

신경 가소성의 핵심 영향

신경 가소성은 정신 건강 개선의 중심 기계론적 구성 요소로 점점 더 특징 지어지며 PA의 영향을 많이 받습니다. 주요 신경 회로 내에서 신경 생물학적 리모델링을 위한 뇌의 능력은 적응 학습의 중요한 요소이며, 많은 이질적인 정신 건강 상태에서 손상되고, 나이가 들면서 감소하며, 여러 연령 관련 전신 과정에 의해 억제될 수 있습니다. 적응 학습은 행동 중재 후 정신 건강 개선의 중요한 요소입니다. 증가된 신경 가소성 능력은 선택적 세로토닌 재흡수 억제제 및 비자성 자극을 포함하여 널리 사용되는 여러 체세포 정신과 치료 양식의 정신 건강 이점을 뒷받침하는 하나의 가설 메커니즘입니다. 운동은 신경 가소성을 증가시키는 것으로 보이는 몇 안 되는 행동 과정 중 하나입니다.

 

구조적 수준에서 신경 가소성은 새로운 뉴런과 신경교 세포의 성장 (신경 발생)뿐만 아니라 수지상 리모델링, 시냅스 형성 및 가지치기, 축삭 증강 (시냅스 생성)을 통한 기존 신경망 간의 새로운 연결을 나타내는 데 사용되었습니다. 추가적인 관련 변화에는 새로운 미세 혈관 경로의 성장 (혈관 신생)과 보상 감작에 중요한 신경 전달 물질 시스템 (모노 아민)의 강화가 포함됩니다. 이제 성인 인간의 경우 신경 발생이 정신 건강 장애 및 치료에 중요한 두 개의 특정 뇌 영역에서 발생한다는 일반적인 합의가 있습니다: (a) 치아 이랑의 하위 과립 영역 (근심 측두엽) 및 (b) 꼬리와 선조체에 인접한 심실 하 영역 (피질 – 전두엽 피질). 치아 이랑은 새로운 기억의 생성 및 통합과 감정의 조절에 필수적이며, 주로 새로운 회백질 세포 성장을 통해 변화합니다. 뇌실 하 영역과 꼬리는 선조체 도파민 기능과 피질 하 백질 경로에 중요합니다. 여러 줄의 증거는 행동 결과로서의 신경 가소성 변화와 향상된 학습 능력이 성공적인 치료 결과를 위한 중요한 치료 기질임을 시사합니다 (그림 2).

 

그림 2

운동 훈련이 정신 건강 결과를 향상하는 신경 생물학적 메커니즘의 개념적 모델. 약어: BDNF, 뇌 유래 신경 영양 인자; IGF-1, 인슐린 유사 성장 인자 1; VEGF, 혈관 내피 성장 인자.

 

신경 가소성 촉진자

신경 가소성 변화를 촉진하기 위해서는 몇 가지 핵심적인 체계적 요인이 존재해야 하며, 이는 모두 운동 훈련을 통해 수정할 수 있다. 간단히 말해서, 이것들은 신경 영양소, 손상되지 않은 뇌 대사 기능, 낮은 신경 염증, 그리고 수면을 포함한다. 신경 영양 성장 인자는 운동으로 강화되며 뇌유래신경영양인자(BDNF), 혈관내피성장인자(VEGF), 인슐린 유사 성장인자(IGF-1)의 조절을 포함하여 신경 가소성과 관련이 있습니다. BDNF는 유산소, 저항 운동 훈련 후에 증가하며, 치아 이랑의 신경 발생에 중요하다. VEGF는 혈관신생뿐만 아니라 뇌혈관 및 미세 신경교 기능과 더 밀접하게 관련되어 있다. IGF-1은 대뇌 및 전신 대사 변화와 더 밀접하게 관련되어 있으며, BDNF에서 보이는 것과 유사한 구조적 적응을 제공한다.

 

신경 가소성 억제제

성장 인자, 특히 BDNF는 또한 여러 정신 건강 상태에서 방해받는 세포 생체 에너지 기능 을 조절하는 데 전신 효과가 있어 정서적 통제를 촉진하거나 유연한 반응 패턴을 배양하거나 지지 신경 회로 내에서 시냅스 가소성 적응을 촉진하는 것을 더 어렵게 만듭니다. 생체에너지 시스템은 또한 염증의 영향을 많이 받으며, 신경 발생 및 우울증과 여러 분자 경로를 공유합니다. 염증 수준이 높아지면 에어로빅 운동이 신경 발생 강화에 미치는 영향을 억제하는 것으로 보이며, 부분적으로는 뇌의 키누레닌 축적 증가를 통해 나타납니다. 운동은 키누레닌의 골격근 제거를 촉진할 수 있으며, 이는 정신 건강 결과에 대한 운동과 선택적 세로토닌 재흡수 억제제의 유사한 효과가 키누레닌 경로를 통한 병렬한 신경 보호 효과 때문일 수 있음을 시사합니다.

 

운동 훈련 : 뇌 네트워크 변화

운동이 중요한 뇌 신경 회로에 미치는 영향을 이해하기 위해 기존 증거는 세 가지 범주로 분류할 수 있다. 대규모 뇌 네트워크의 삼중 네트워크 모델로 특징지어지는 세 가지 기능적 신경해부학 회로에서 변화가 관찰된다. 표 1에서 보는 바와 같이, 이러한 변경은 현저성 네트워크(SN), ECN(실행 제어 네트워크) 및 DMN(기본 모드 네트워크)에서 발생합니다. 우울증과 불안감은 DMN(해마) 및 SN(편도체 및 전방 대상 피질) 뇌구조 내의 부피 감소와 관련이 있다. 우울증이 있는 사람들은 또한 ECN과 DMN 사이의 연결성이 감소하는 것을 보여주는 반면, 불안증이 있는 사람들은 ECN과 SN 사이의 연결성이 감소하는 것을 보여준다. 상이한 메커니즘을 사용한 정신과 치료에 따른 개선은 이러한 주요 네트워크 간의 연결 변경과도 관련이 있다. 예를 들어, 감정 조절(ER) 중심의 심리치료에 따른 치료 관련 개선은 SN과 DMN 사이의 연결성 변화와 관련이 있으며, 두 네트워크 모두 성공적인 치료 후 ECN에 대한 연결성이 증가했음을 보여준다. 비정상적인 SN 및 DMN 연결성이 치료에 따라 개선되는 우울증의 약리학적 치료 후 유사한 개선 패턴이 입증되었으며, 증상 클러스터(감정 및 체성), 항우울제 유형(노아드레날린성 및 세로토닌성) 및 변화된 연결성 패턴에 대한 차별적 개선도 나타났다. 이러한 발견은 ECN과의 연결성 향상이 인지 제어(SN 연결의 경우)의 행동 개선 및 지나치게 자기 참조적인 처리(DMN 연결의 경우)의 감소와 관련이 있음을 보여주는 것으로 해석된다.

 

표 1

운동 훈련 및 정신 건강 결과와 관련된 대규모 뇌 네트워크

현저성 네트워크 (SN) 집행 제어 네트워크(ECN) 기본 모드 네트워크(DMN)
신경 회로(네트워크 허브) 전방 섬, 전장 ACC, 편도체, 복부 선조체 등측 PFC, 등쪽 ACC, 후방 정수리 피질 후방 대상 피질, 복측 PFC, 각 이랑

 

신경 행동/인지 과정 기능: 목표 지향적 행동 참여, 보상 민감화, 활력, 갈등 해결, 동기 부여 학습, 인터셉션

기능 장애: 탈억제, 무관심, 혐오적인 인터셉티브 단서의 통합 불량

기능 :인지 제어, 작업 기억, 세트 유지 관리, 작업 모니터링 및 업데이트,인지 유연성, 경계, 메타인지

기능 장애 : 실행 기능 장애, 인내, 계획 및 시간 관리 장애, 부주의

기능: 자기 참조

처리, 일화 기억 및 자서전 검색, 의미 기억, 내부 표현 및 가치 기반 의사 결정

기능 장애: 사회적 인지 장애, 기억 장애, 언어 실증

신경 전달 물질 시스템 노르에피네프린, 도파민 도파민, 가바 세로토닌, 아세틸 콜린, 글루타메이트
인지 테스트 아날로그 스트룹 간섭, 고노 고/플랭커 작업, 아이오와 도박 작업, 언어 유창성 트레일 만들기 테스트, 위스콘신 카드 정렬 테스트, 하노이 타워, 숫자 스팬, 정신 산술 논리적 기억 테스트, 캘리포니아 언어 학습 테스트, Benton 시각 기억 테스트, 보스턴 명명 테스트
행동적/심리적 과정 기능 : 접근 지향적 대처, 작업 인내, 공감

기능 장애 : 무감각증, 반추, 충동, 회피 행동

기능: 인지 유연성, 피드백에 대한 적응, 유연한 주의 기능 장애: 융통성 없는 행동 반응, 부주의 기능 : 규제 된 영향, 사회적 민감성, 적절한 자기 상황

기능 장애 : 열악한 영향 조절, 일반화 / 자기 참조 기억

운동 훈련 관련성 (단계) 초기 훈련 참여, 자기 조절 기술 습득, 강화 단서에 대한 민감성, 혐오스러운 신체적 단서 조절에 중요 자기 규제 기술 일반화, 운동 유지, 유연한 대응 패턴, 자기 강화 전략 조정, 진행 상황 모니터링, 비상 관리에 중요 재발 예방, 새로운 기술 통합, 심리사회적 스트레스 요인 관리를 위한 정서적 통제, 행동 유지를 위한 자기 참조 지식 사용에 중요
정신 질환 GAD, PTSD, OCD, BPD, 중독, 거식증, 통증 장애, 파킨슨 병, 혈관성 치매, ADHD 및 MDD에서 중단 MDD, 양극성, 정신 분열증, 전두측두엽 및 혈관성 치매, ADHD, 자폐증을 포함한 대부분의 정신과 적 상태에서 중단됩니다. 기억 상실성 MCI, 알츠하이머 병, MDD, 사회 불안 장애 및 간질을 포함한 여러 상태에서 중단됨

ACC, 전방 대상 피질; ADHD, 주의력 결핍 / 과잉 행동 장애; BPD, 경계성 인격 장애; GABA, 감마-아미노부티르산; GAD, 범불안 장애; MCI, 경미한인지 장애; MDD, 주요 우울 장애; 강박 장애, 강박 장애; PFC, 전두엽 피질; PTSD, 외상 후 스트레스 장애.

운동 훈련 후 체적 변화는 전두엽 피질 (PFC), 피질 하 및 근심 측두엽 뇌 구조에서 가장 일관되게 관찰되었으며, 치아 이랑에서 가장 일관된 변화가 나타났습니다. 근심 측두엽 (MTL)은 알츠하이머병과 같은 신경 퇴행성 질환 과정에 특히 취약하지만, 운동은 중년 및 노인 샘플 모두에서 이 뇌 영역의 부피를 증가시키는 것으로 보입니다. 예를 들어, 노인의 중간 강도 훈련은 6개월에서 12개월로 용량 반응 개선으로 해마 부피를 증가시켜 다른 뇌 영역의 체적 증가없이 규범적 신경 퇴행성 변화 (매년 1-2 %)를 상쇄합니다. 우울증 환자로부터 신경 영상 데이터를 수집하는 몇 안 되는 운동 시험 중 하나에서 우울 증상은 30%의 중도 탈락률과 유의한 치료 그룹 혜택의 부족에도 불구하고 MTL 볼륨 증가 및 언어 기억력 향상과 병행하여 개선되었습니다.

 

대부분의 무작위 대조 시험 (RCT)은 MTL 뇌 영역에 초점을 맞추었지만, 특히 SN 및 ECN 기능에 중요한 PFC 및 두정엽 영역에서 백질 변화도 보고되었습니다. 1년간의 훈련 개입에서 Voss와 동료는 PFC에서 백질 무결성의 미세 구조 매개 변수의 개선을 입증하여 MTL 뇌 영역의 개선과 병행했습니다. 유사하게, LOOK-AHEAD 당뇨병 시험 참가자에 대한 12-28년 추적 검사에서 라이프 스타일 중재 그룹은 9% 낮은 심실 부피와 비교해 50% 낮은 백질 고강도 부피를 보여주었습니다. 우리는 최근 에어로빅 운동이 51주 치료 후 백질 고강도 진행을 안정화한 우울증이 있는 성인의 파일럿 연구에서 병렬 결과를 보고했습니다. 특히, 예비 증거는 저항 훈련 후 유사한 개선을 시사하며, 참가자들은 PFC 백질 부피와 집행 기능의 개선을 보였다.

 

연결 변화에 대한 운동 훈련의 효과는 근본적인 행동 변화에 대한 기능적 중요성을 설명함으로써 구조적 마커에 관한 연구를 확장합니다. 현존하는 연결 연구는 DMN 뇌 구조의 체적 변화와 무관하게 SN 및 ECN 신경 회로에 영향을 미치는 큰 영향을 시사합니다. 예를 들어, 급성 운동은 DMN 기능을 선택적으로 및 적응적으로 억제하는 SN 및 ECN 뇌 영역의 향상된 능력에 의해 나타난 바와 같이 DMN 내에서 효율성을 향상시키고 네트워크 간의 기능 변조를 향상시키는 것으로 나타났습니다. 인지 제어의 행동 마커의 병렬 개선과 함께, 몇몇 RCT는 운동 훈련이 임상적으로 중요한 신경회로의 연결성을 향상시킬 수 있다고 제안했으며, 일부는 뇌 연결성 마커가 번역 바이오마커로서 가장 중요하다고 제안합니다. 운동 훈련에 대한 이전의 무작위 시험은 ECN 및 DMN 연결성 마커를 개선하고 그에 상응하는 행동 개선을 제안한다. 예를 들어, Voss와 동료들은 노인들 사이에서 12개월간의 유산소 운동 프로그램이 ECN과 DMN 연결성을 향상했으며 그에 상응하는 집행 기능이 향상되었음을 발견했습니다. 특히 DMN은 운동 훈련에 대한 반응성 뿐만 아니라 우울증, 특히 LLD의 발병기전에 널리 연루되어 광범위하게 연구되었습니다. 또한, 점점 더 많은 연구가 중단된 연결성에 대한 더 큰 기준선 증거가 인지 제어 마커의 후속 행동 개선을 예측한다는 것을 시사합니다. 기분 개선에 대해서도 유사한 결과가 보고되었으며, DMN과 ECN의 연결성 변화는 우울증이 있는 성인의 치료 결과 저하 및 인지 기능 장애 증가와 관련이 있습니다.

 

관찰된 연결성 변화는 또한 신경 전달 물질 시스템, 특히 신경 조절 경로 (도파민, 노르에피네프린 및 (세로토닌))의 향상에 기인 할 수 있습니다.

 

이 주장은 운동 후 신경 행동 개선이 도파민성 파괴로 먼저 영향을 받는 집행 기능에서 가장 크다는 것을 시사하는 많은 양의 간접적인 증거에 의해 뒷받침됩니다. 또한, 파킨슨병, 주의력 결핍 / 과잉 행동 장애 및 양극성 장애를 포함하여 기능 장애가 있는 도파민성 / 노르에피네프린 기능 장애가 있는 이질적인 인구에서 병행인지 개선이 관찰되고 운동 관련 도파민 생성 증가. 세로토닌 시스템의 조절은 또한 기분 관련 변화에 대한 급성 운동 훈련의 효과에 중요한 기계론적 역할을 하는 것으로 널리 가정되어 있으며, 적어도 하나의 이전 시험에서 유산소 훈련의 강도가 높을수록 혈장 5-HT 수준이 증가하여 반응 억제 개선과 관련이 있음을 입증했습니다. 종합하면, 이러한 데이터는 모노 아민의 향상된 생산 및 합성이 개선된 영향 조절 및 인지 제어의 중요한 구성 요소이며, 둘 다 자기 조절을 강화한다는 것을 시사합니다.

 

운동 훈련: 행동 메커니즘

인지 및 정서적 반응의 직접적인 조절 외에도 운동 훈련은 정신 건강을 향상하는 적응 행동 반응의 학습을 촉진 할 수 있습니다(그림 1). 자율 규제 능력으로 광범위하게 공식화됩니다. 자기 조절은 방대하지만, 변화의 초 진단 메커니즘인 ER과 인지제어를 포함합니다. 행동 변화의 과학 이니셔티브와 일관되게, 이러한 메커니즘은 다양한 분석 수준에서 평가 가능하고 일관성이 있어야 하며(즉, 행동 메커니즘의 변화는 신경생물학적 변화와 일치해야 함) 확장하여 상호 촉진적일 수 있으므로 하나의 변화가 다른 하나에 영향을 미칩니다. 이전 연구에서 감정과 감정의 조절을 조사했지만, 영향 조절은 전통적으로 자기 조절을 위해 감정이나 감정 표현의 조절로 정의되었습니다. 영향 규제는 또한 전통적으로 ER과 비교하여 집행 기능과 더 밀접하게 관련되어 있습니다.

 

심리적 및 신경인지 메커니즘을 단일 모델에 통합하는 예는 거의 없습니다. 한 가지 가능한 예외는 자기 시스템 이론 (SST)입니다. SST에 따르면, 많은 심리적 장애는 목표 추구의 누적 또는 치명적인 실패로 인해 발생합니다. SST는 우울증에서 가장 널리 사용됐으며, 자기 조절 결핍이 있는 우울한 성인들 사이에서 기존의 치료법보다 우수합니다. 그러나 PA 및 정신 건강에 대한 기계론적 연구와 병행하는 SST의 중요한 개념적 요소는 심리적 기능과 신경 생물학적 비효율성을 통합하여 개인 내의 잠재적인 자기 조절 실패에 이바지한다는 것입니다. 정신 건강에 대한 운동의 차별적 영향은 둘 사이의 효과적인 시너지 효과 부족으로 인해 발생할 수 있습니다. 이 개념은 중재가 누구를 위해 어떤 조건에서 효과가 있는지 이해하고 치료를 조정하는 데 중요 할 수 있습니다.

 

운동 중재를 정신 건강과 연결하는 특정 행동 메커니즘에는 규제 (예 : 각성 용인 및 조절) 및 인지 (예 : 행동에 대한 인지적 통제를 행사하고, 주의를 유지하고, 환경적 요구에 맞도록 주의 및 행동 반응을 유연하게 이동), 이는 정신 건강에 직접적으로 영향을 미칠 수 있으며 자기 효능감 증가를 통해 . 운동은 또한 개인적으로 의미 있거나 보람이 있는 활동에 대한 참여 증가 및 보상 민감성 또는 개선된 체력 (예: 더 적합한 느낌, 개선된 신체 이미지)을 통해 보상 중요성을 강화할 수 있습니다. 행동 메커니즘은 다음과 같이 변화의 신경학적 영역과 광범위하게 일치합니다.

 

그림 3.

운동 훈련이 정신 건강 결과를 향상하는 행동 메커니즘의 개념적 모델.

 

감정 조절/경험적 회피

운동이 기분에 미치는 영향은 스트레스를 많이 받는 생활 상황에서 기분을 급격히 향상하고 정서조절(ER)을 개선함으로써 운동을 정신 건강과 연결하는 가장 널리 연구된 메커니즘 중 하나입니다. 수용 및 헌신 치료 및 변증법적 행동 치료와 같은 새로운 인지 행동 치료(CBT)는 변화의 핵심 메커니즘으로 정서조절의 어려움을 목표로 합니다. ER은 감정의 인식과 명확성뿐만 아니라 감정의 수용과 감정적 반응을 조절하는 능력을 포함하는 다차원 구조입니다. 중요한 문헌에 따르면 정서조절의 어려움은 정신 건강 문제와 관련이 있으며 정서조절의 개선은 더 나은 정신 건강과 일치합니다. 더 작은 문헌은 결과를 전향적으로 예측하는 이러한 프로세스의 개선을 보여줍니다. 원치 않는 생각과 감정에 대한 경험적 회피 및 회피 대처 (즉, 생각 / 감정을 피하거나 억제하려는 노력)는 특히 해롭고 불안 장애 (공황 장애 포함), 우울증, 약물 남용 및 외상 후 스트레스 장애 (PTSD)의 발달 및 유지에 이바지합니다. 과잉 경계, 내부 단서에 대한 반응적 또는 충동적 반응, 감정 표시의 어려움(무독증 또는 열악한 인터셉티브 인식)과 관련된 문제도 정신 장애, 특히 PTSD, 경계성 인격 장애 및 섭식 장애와 관련이 있습니다.

 

운동은 부정적인 영향이나 높은 수준의 각성을 견딜 수 있는 개인의 능력을 향상할 수 있습니다. 예를 들어, 고강도 운동은 불안을 모방하는 자율 각성을 유도합니다. 운동하는 동안 개인은 위협적이지 않은 맥락에서 이러한 감각을 경험하며, 혐오스러운 인터셉티브 단서가 예상 될 뿐만 아니라 효과적인 참여를 나타낼 수 있습니다. 이것은 불안과 새로운 연관성을 형성하고 회피 / 탈출 반응을 억제하면서 인터셉티브 감각을 견딜 수 있는 능력을 증가시킬 수 있습니다. 참가자는 또한 페이스 호흡과 같은 각성을 조절하는 기술을 배울 수 있습니다. 운동 훈련, 특히 고강도 인터벌 트레이닝 및 저항 훈련은 또한, 보다 장기적인 목표(예: 피트니스)를 추구하는 데 일시적인 불편함을 유발합니다. 장기적인 이득을 위해 단기간의 불편 함을 허용하는 능력은 충동 조절에 필수적입니다. 몇 주 동안 반복되는 운동 훈련과 점진적인 강도 적정은 참가자가 잠재적으로 고통스러운 내부 경험에 숙달하도록 돕는 데 특히 효과적일 수 있습니다. 따라서 운동은 점진적 노출을 통한 탈감작 기술을 사용하는 기존의 심리 치료 패러다임과 유사하게 훈련의 맥락에서 반응 예방과 점진적 노출을 통합 할 수 있습니다. 다양한 임상 인구를 대상으로 한 연구에 따르면 유산소 훈련은 불안과 불안 민감성을 감소시킵니다. 실제로, 운동 훈련 후 활성화 및 기능이 향상된 대부분 뇌 영역은 DMN 경로 내의 정서적 반응성, 특히 복측 PFC와 피질 하 및 섬 뇌 영역 내에서의 반응성 조절에서 중요성으로 잘 알려져 있습니다. 영향 반응성 감소는 건강에 해로운 회피 또는 정서적 반응 억제의 필요성을 감소시킬 것으로 예상됩니다.

 

별도의 연구 라인은 의도적인 체중 감량 환경에서 운동 훈련 후 도발적인 자극에 대한 정서적 반응성의 변화를 조사했습니다. 이 연구는 행동 훈련 운동이 특히 복부 선조체와 insula에서 두드러진 음식 단서에 대한 참가자 SN 반응성을 감소시킬 수 있음을 시사합니다. 크로스 오버 디자인을 사용한 유사한 연구에서 습관적인 운동가들 사이에서 60 분의 운동은 푸 타멘 및 섬 주위 뇌 영역의 활성화를 고 에너지 음식 신호로 감소시켰다. 유사하게, Cornier와 동료는 체중 감소가 6개월 간의 운동 시험 후 과체중 / 비만 성인의 섬 활성화 감소와 관련이 있음을 발견했습니다. 종합하면, 이 연구는 운동이 음식 단서의 정서적 반응 / 현저성을 감소시켜 충동을 조절하거나 식습관을 조절하는 능력을 증가시킬 수 있음을 시사합니다. 음식 반응의 증가된 조절은 또한 충동 조절 및 자기 조절 능력을 배양하는 데 더 광범위한 영향을 미칠 수 있으며, 이는 물질 사용 위험 감소, 행동 충동성 및 정신 건강 기능의 전반적인 개선에 중요합니다.

 

인지 제어/유연성

운동 훈련 프로그램에는 종종 중재 전달의 맥락에서, 특히 가정 기반 훈련 패러다임의 경우 행동 변화 전략이 포함됩니다. 행동 변화 전략에는 목표 설정, 활동 계획(행동 활성화 포함), 적응형 문제 해결, 피드백 제공 및 자기 모니터링과 같은 행동 자기 조절 기술을 포함하며, 이 모든 것이 기존 CBT의 핵심 요소와 겹칩니다. 이러한 전략이 정신 건강 상태를 가진 개인의 행동 시험에서 활용되면 적극적인 치료 역할을 할 가능성이 크며 치료 개선을 부분적으로 설명 할 수 있습니다. 아래에 자세히 설명하고 있듯이 효과적인 행동 참여와 자기 모니터링은 우울증과 불안이 있는 개인에게 자주 손상됩니다. 따라서 이러한 기술 세트를 배양하는 중재는 운동 적정 및 유지 서비스에서 임상적으로 관련된 기술 영역의 경험적 실습 기회를 제공할 수 있습니다.

 

기존의 운동 훈련 프로그램은 참가자들에게 운동 참여 및 유지를 최적화하기 위해 구체적이고, 측정 가능하며, 달성할 수 있고, 현실적이고, 시기적절한(SMART 목표) 목표를 식별하고 구현하도록 가르칩니다. SMART 목표를 설정하고, 목표를 향해 노력하고, 반복적인 진행 상황을 평가하는 과정을 통해 참가자는 자신에 대한 현실적인 기대치를 키우고 행동 통제 감각을 내면화합니다. 현실적인 목표 설정 및 달성은 또한 자제력을 높이고, 선택 의지를 늘리고, 자아 개념과 새롭고 긍정적인 연관성을 확립함으로써 응급실에 이바지합니다. 자체 모니터링 프로세스(행동 및 그 결과 추적)는 또한 부적응 행동 패턴을 식별할 뿐만 아니라 효과적인 행동을 식별하고 반복하는 더 큰 능력을 구축할 수 있습니다.

 

우울증과 불안을 포함한 여러 정신 건강 상태는 인지 유연성과 주의력 조절의 장애로 유명합니다. 어려움에는 열악한 설정 이동 능력(즉, 작업 간 전환 또는 피드백에 대한 응답 동작 변경의 어려움), 선택적 주의 및 산만함이 포함됩니다. 지속적인 주의력과 경계는 또한 많은 정신 건강 상태, 특히 우울증에서 손상되며, 환자는 장기간에 걸쳐 목표 지향적 목표에 대한 참여를 유지하는 데 어려움을 겪습니다. 반추 또는 과도한 걱정과 같은 경쟁적인 인지 과정은 효과적인 작업 수행에서 주의를 돌리고 정서적 고통을 증가시킬 수 있습니다.

 

인지 유연성과 실행 기능을 포함한 인지 제어 영역의 장애는 행동 치료 결과와 반복적으로 연관되어 있습니다. 유사하게, 인지 유연성과 실행 기능을 향상하는 행동 치료는 우울증과 불안 결과에 유리하게 영향을 미치는 경향이 있습니다. 예를 들어, 인지 유연성은 마음 챙김 기반 스트레스 감소의 추정 치료 메커니즘으로, 훈련 후 ECN 뇌 영역 내에서 휴식 상태 연결성을 증가시키는 것으로 나타났습니다. 위에서 언급했듯이 운동 훈련은 실행 기능 과 ECN 뇌 영역 내의 연결성에 우선적으로 유리한 효과가 있는 것으로 보입니다. 특히, 인지 통제가 좋지 않은 것은 부적절한 PA 유지의 강력한 예측 인자이기도 하며, 이는 인지 통제가 좋지 않으면 PA 참여를 위한 자기 조절 기술의 초기 습득과 시간이 지남에 따라 유지를 위한 이러한 기술의 활용 모두에 장벽이 될 가능성이 있음을 시사합니다.

 

몇 가지 새로운 CBT는 비생산적인 정신 활동에 대한 참여를 줄이고 현재 순간에 있을 수 있는 능력을 향상하기 위해 마음 챙김을 가르칩니다. 운동 훈련 프로그램은 특히 운동이 충분히 어려운 경우 현재에 주의를 기울이고 유지하는 능력을 향상할 수 있습니다. 이 경우 활동에 효과적으로 참여하려면 작업에 대한 완전한 관심과 좁아진 자극 세트(예: 호흡 및 호흡 속도 조절 능력)에 대한 인식이 필요합니다. 이러한 행동 메커니즘은 아래에 자세히 설명 된 바와 같이 일부 자극 (위에서 설명)의 현저성 및 보상 강화의 신경 생물학적 매개 감소와 함께 변경될 수 있습니다.

 

자기 효능감

개인의 자기 조절 행동은 또한 자기 효능감에 대한 겹치는 영향을 통해 정신 건강 기능에 중요합니다. 광범위하게 정의된 자기 효능감은 구체적이고 개인적으로 중요한 목표를 달성할 수있는 능력에 대한 개인의 자신감을 나타냅니다. PA에 대한 더 큰 참여는 신체 이미지 및 신체적 삶의 질 향상과 관련된 운동 자기 효능감을 증가시키고 시간이 지남에 따라 지속적인 PA 유지 가능성을 증가시키는 것으로 나타났습니다. 또한, 위에서 검토한 많은 영역은 성과 달성 모니터링, 행동 모델링, 사회적 설득 및 생리적 상태의 적응적 해석을 포함하여 향상된 자기 효능감의 주요 개념적 요소와 밀접하게 일치합니다. 최근의 메타 분석 종합은 운동 중재가 청소년 및 성인 코호트 (ES = 0.59)에서 자기 효능감에 적당히 큰 개선을 제공한다는 것을 시사한다. 행동 변화 전략의 총 수는 사용된 특정 전략에 관계없이 개선된 PA와 가장 강력한 연관성을 보여줍니다.

 

강화/보상

강화 또는 적응 보상의 빈곤은 부정적인 영향 (예: 우울증)을 증가시키거나 긍정적인 감정을 증가시키기 위한 부적응 행동 패턴의 발달 (예: 약물 남용)으로 이어질 수 있습니다. 행동 활성화를 통한 우울증 치료 메커니즘으로서 강화제/보상 증가에 대한 광범위한 문헌이 있습니다. 수용 및 헌신 치료와 같은 최신 CBT는 행동 활성화를 특히 개인 가치와 연결하며, 이는 강화 가치를 높이거나 확립 작업의 기능을 수행하거나 활동 참여를 유지하는 데 도움이 될 수 있습니다. 행동 활성화에는 종종 운동이나 다른 형태의 PA가 포함되므로 긍정적인 강화의 기회를 늘리고 손실과 보상에 대한 현실적인 기대치를 키울 수 있으며, 둘 다 정신 건강을 향상할 수 있습니다. 또한, 보상 민감도의 개인차는 습관적 PA 및 유지 관리의 자기 강화 특성과 관련된 PA의 중간적이고 긍정적인 결과 (예: 기분 또는 체력 향상)에서 관찰된 이질성 일부를 설명 할 수 있습니다.

 

역기능 보상 민감도는 우울증의 위험을 증가시키는 핵심 기능이며 많은 치료적 개입의 실행에 대한 주요 장벽으로 작용합니다. 운동 훈련은 도파민 기능을 증가시켜 보상 민감도를 향상하는 것으로 가정되었습니다. 목표 지향적 행동에 초점을 맞추면 복측 PFC 및 복부 선조체 내에서 하향식 활성화를 강화하고 스트레스가 많은 활동 중에 섬 및 편도체 활성화를 하향 조절하는 것으로 나타났습니다. 습관성 PA에 종사하는 개인은 급성 운동 훈련 후 앉아있는 사람들과 비교하여 중요한 도파민 허브인 복부 선조체의 차별적인 활성화를 보여줍니다. 습관적인 PA에 익숙한 개인은 또한 앉아있는 상대에 비해 향상된 보상 시스템 기능을 보여주며, 이는 체력에 따라 다르지 않은 것으로 보입니다.

 

맞춤형 치료를 위한 향후 방향

운동을 정신 건강과 연결하는 신경학적 및 행동적 메커니즘과 이들이 시너지 효과를 발휘하여 결과를 생성하는 방법을 명확하게 지정하는 것은 훈련 참여를 강화하고 개인 또는 개인 그룹의 결과를 최적화하기 위한 운동 프로그램 설계에 영향을 미칠 수 있습니다. 기존의 신경 생물학적 차이는 운동 중재가 효과적으로 참여하는 정도를 설명하거나 운동 훈련의 맥락에서 간접적인 혜택 메커니즘을 제안 할 수 있습니다. 반복되는 측정 및 네트워크 분석은 아마도 상호 촉진적인 요소 간의 연관성을 푸는 데 도움이 될 수 있습니다.

 

위에서 검토한 바와 같이, 신경 가소성의 신경생물학적 마커와 자기 조절 기능의 행동 마커는 모두 미래의 운동 훈련 패러다임 개발에 관련성이 있습니다. 향후 연구에서는 중재 참여를 최적화하기 위해 신경 가소성의 표현형 마커를 중재 개발에 통합해야 합니다. 예를 들어, 무딘 보상 민감도를 가진 개인은 초기 운동 참여에 어려움을 겪을 수 있으므로 감독된 훈련 프로그램에 적절하게 참여하거나 완료할 가능성이 작습니다. 이러한 개인은 활동의 더 점진적인 적정, 훈련 세션 전에 동기 부여 프라이밍 또는 외부 소스를 사용한 보상 강화 단서의 향상으로부터 이점을 얻을 수 있습니다. 유사하게, 인지적 유연성 및 / 또는 실행 기능 장애의 증거가 있는 개인은 운동 유지에 어려움을 겪을 수 있으며 더 큰 외부 규제 지원 (예: 구조화된 수업 또는 배우자와의 운동) 또는 최적의 ER을 위한 지속적인 PA의 가능성을 높이기 위해 추가 자가 관리 훈련을 받는 것이 도움이 될 수 있습니다.

 

향후 연구에서는 또한 치료 참여의 기준 예측 인자와 치료 개선 메커니즘으로서 시간에 따른 참가자 간의 자기 조절 기술의 개인차를 체계적으로 평가하고 정량화해야 합니다. 기준선에서 자기 조절 기술의 개인차를 지정하면 효과적인 치료 매칭 (성공할 가능성이 더 큰 운동 프로그램 또는 기술 결핍을 해결하고 전반적인 건강과 웰빙을 개선할 가능성이 더 큰 프로그램에 개인을 일치하거나 결과를 최적화하기 위해 기존 개입을 조정할 수 있습니다. 예를 들어, 영향을 조절하는 데 어려움을 겪는 개인은 정서적 또는 인터셉티브적 불편 함을 피하는 경향이 있으며, 고통스러운 과거 경험이나 각성이 위험하다는 부정확한 믿음으로 인해 각성에 대한 민감도가 증가 할 수 있습니다. 정확한 기원에 관계 없이 이러한 행동 경향은 활동의 차별적 적정, 산만 기술의 더 많은 사용 또는 인터셉티브 단서에 대한 자기 참조 주의에 지나치게 의존하지 않는 외부 생체 인식 소스(예: 심박수)를 기반으로 한 적정을 위한 자체 모니터링의 필요성을 시사합니다. 이 참가자들은 또한 혐오스러운 단서를 피하거나 피하려는 충동에 저항하거나 시간이 지남에 따라 점차 확장될 수가 있는 관용의 기간에 지속할 수 있도록 각성을 조절하는 전략을 사용하여 숙달을 얻도록 훈련받을 수 있습니다.

 

또한, 향후 RCT는 더 나은 정신 건강 결과를 달성하기 위해 신경 가소성 프라이밍의 상대적 중요성을 결정하기 위해 최적화 설계를 사용하는 것이 도움이 될 수 있습니다. 예를 들어, 우울증을 치료하기 위해 순차적 무작위 배정을 사용하는 RCT는 연결성 또는 실행 기능 변화에 따라 참가자를 다시 무작위 배정 할 수 있으며, 이는 치료 반응성의 중간 마커로서 향상된 신경 가소성을 시사한다. 유사하게, 운동 유지 관리를 조사하는 시험은 사회적 지원의 통합 또는 운동 훈련 장비에 대한 더 큰 접근을 포함하여 자기 규제 능력이 낮은 개인들 사이에서 외부 지원 전략을 제공함으로써 이점을 얻을 수 있습니다. 이러한 개인은 행동 수정을 스스로 시작하거나 운동 유지를 위해 행동 반응을 유연하게 조정할 가능성이 작아 결과에 대한 추가 환경 지원이 중요합니다.

 

결론

결론적으로, 유산소 및 저항 운동 훈련은 정신 건강 상태, 특히 우울증과 불안의 치료 및 관리에 대해 약속을 하고 있습니다. 새로운 증거는 근본적인 신경 가소성의 변화가 이질적인 치료 이점을 설명하는 중요한 개인차일 수 있음을 시사합니다. 또한, 기준선 또는 중재 관련 변화에서 신경 가소성의 근본적인 개인차는 정신 건강에 필수적인 행동 자기 조절 기술을 개발하고 유지하는 개인에게 큰 영향을 미칠 수 있습니다. 이러한 요인들은 시너지 효과를 발휘하여 정신 건강에 대한 운동의 장기적인 영향을 예측하는 “선순환”을 만듭니다. 운동을 정신 건강 개선과 연결하는 신경 생물학적 및 행동 메커니즘을 명확하게 지정함으로써 치료 효과를 최적화하고 최대 이익을 위해 훈련 접근법을 개인화 할 수 있습니다.

LLD: late-life depression

SN: salience network

ECN: executive control network

DMN: default mode network

ER: emotion regulation

LLD: 말기 우울증

SN: Salience 네트워크

ECN: 경영진 제어 네트워크

DMN: 기본 모드 네트워크

ER: 감정 조절

모두를 위한 MRI

휴대용 저자장 스캐너는 부유한 국가와 가난한 국가의 의료 영상에 혁명을 일으킬 수 있습니다.

MRI FOR ALL

Portable low-field scanners could revolutionize medical imaging in nations rich and poor—if doctors embrace them

23 FEB 2023BYADRIAN CHO

https://www.science.org/content/article/mri-all-cheap-portable-scanners-aim-revolutionize-medical-imaging

 

은발의 충격을 받은 70대 남성인 이 환자는 예일 뉴헤이븐 병원의 신경 집중 치료실(신경 ICU)에 누워 있습니다. 그를 보면 며칠 전에 뇌하수체에서 종양이 제거되었다는 것을 결코 알지 못할 것입니다. 수술은 표준과 같이 외과의가 코를 통해 종양에 도달했기 때문에 흔적을 남기지 않았습니다. 그는 테스트중인 새롭고 잠재적으로 혁신적인 장치로 진행 상황을 확인하기 위해 온 한 쌍의 연구원과 유쾌하게 이야기합니다.

 

원통형 기계는 가슴 높이에 서 있으며 스타 워즈 로봇 인 R2D2의 우울한 형이 될 수 있습니다. 연구원 중 한 명이 630kg의 자체 추진 스캐너를 침대 머리까지 조심스럽게 안내하고 조이스틱으로 조종합니다. 연구원들은 침대 시트로 남자를 들어 올려 하이퍼파인이라는 회사에서 만든 휴대용 자기 공명 영상(MRI) 스캐너인 급습(Swoop)에 머리를 편하게 할 수 있도록 도와줍니다.

 

“귀마개를 원하십니까?”두 번째 연구원 인 Vineetha Yadlapalli가 묻습니다.

“일반 MRI만큼 시끄럽습니까?”

“전혀.”

“그럼 필요 없을 것 같아요.”

 

Yadlapalli는 환자의 다리를 받쳐서 등의 부담을 덜어준 후 iPad에서 몇 가지 지침을 탭하여 기계를 작동시킵니다. 기계가 낮은 으르렁 거리는 소리를 낸 다음 신호음과 딸깍 소리를 내며 계속합니다. 몇 분 안에 환자의 뇌 이미지가 Yadlapalli의 태블릿에 나타납니다.

 

30분 동안 남자는 조용히 누워 손을 배에 접었습니다. 그는 구식 헤어 드라이어에서 머리를 할 수 있습니다. 작은 의미에서 그는 이전에 한 번도 가본 적이 없는 곳에서 MRI를 찍는 데 도움을 주는 선구자입니다.

 

많은 경우 MRI는 의료 영상의 황금 표준을 설정합니다. 최초의 유용한 MRI 이미지는 1970년대 후반에 나타났습니다. 10년 이내에 상업용 스캐너가 의학을 통해 퍼져 의사는 뼈뿐만 아니라 연한 조직을 이미지화할 수 있게 되었습니다. 의사가 뇌졸중이 있거나 종양이 생기거나 무릎 연골이 찢어진 것으로 의심되면 MRI를 처방할 것입니다.

 

운이 좋으면 하나를 얻을 수 있습니다. MRI 스캐너는 자기장을 사용하여 살아있는 조직의 원자핵, 특히 수소 원자의 중심에 있는 양성자를 빙글빙글 돌려 전파를 방출합니다. 이 필드를 생성하기 위해 표준 스캐너는 기계 비용을 1.5백만 달러 이상으로 끌어올리는 크고 강력한 초전도 전자석을 사용하여 MRI 가격을 전 세계 인구의 70%가 사용할 수 없는 수준으로 책정합니다. 미국에서도 MRI를 받으려면 며칠을 기다려야 하고 한밤중에 멀리 떨어진 병원까지 운전해야 할 수도 있습니다. 환자는 스캐너로 와야 하며 그 반대가 되어서는 안 됩니다.

 

수년 동안 일부 연구자들은 책상 장난감에서 흔히 볼 수 있는 합금으로 만들어진 훨씬 더 작은 영구 자석을 사용하는 스캐너를 만들기 위해 노력해 왔습니다. 그들은 표준 MRI 자석보다 약 1/25 강한 자기장을 생성하는데, 한때는 너무 약해서 사용 가능한 이미지를 수집할 수 없었습니다. 그러나 더 나은 전자 장치, 보다 효율적인 자료수집 및 새로운 신호 처리 기술 덕분에 여러 그룹이 표준 MRI보다 해상도가 낮지만 낮은 필드에서 뇌를 이미지화했습니다. 그 결과 환자의 침대로 굴러갈 수 있을 만큼 작고 전 세계에서 MRI에 액세스할 수 있을 만큼 저렴할 수 있는 스캐너가 탄생했습니다.

 

Low-field MRI brain scan. The image is grainy, but shows the structure of the brain and a lighter-colored patch on the left side.

Traditional MRI scan of the same brain. The image is clearer, and the same light-colored patch is visible in more detail.

저필드 기계(첫 번째 이미지)의 뇌 스캔 해상도는 기존 MRI(두 번째 이미지)보다 거칠지만 두 이미지 모두 출혈을 분명히 드러냅니다. 예일 의과 대학

 

기계는 기술적 승리를 표시합니다. 하이퍼파인 스캐너를 테스트하고 있는 미국 국립표준기술연구소(National Institute of Standards and Technology)의 생의학 엔지니어인 캐서린 키넌(Kathryn Keenan)은 “모든 사람이 이 스캐너가 작동한다는 사실에 깊은 인상을 받았다”고 말합니다. 어떤 사람들은 스캐너가 의료 영상도 변화시킬 수 있다고 말합니다. “우리는 잠재적으로 완전히 새로운 분야를 열고 있다”라고 예일 의과 대학의 신경 학자인 케빈 셰스 (Kevin Sheth)는 Swoop과 광범위하게 일했지만, Hyperfine에 재정적인 관심은 없다. “‘이런 일이 일어날 것인가’의 문제가 아닙니다. 그것은 일이 될 것입니다.”

 

2020년 8월, Swoop은 뇌 이미징을 위해 미국 식품의약국(FDA) 승인을 획득한 최초의 저자장 스캐너가 되었으며 의사들은 예일 뉴헤이븐 및 기타 지역에서 임상 연구를 진행하고 있습니다. 다른 장치는 뒤에 있습니다. 그러나 물리학자이자 컨설팅 회사인 NeuvoMR, LLC의 설립자인 Andrew McDowell은 해상도가 낮은 저자장 스캐너 시장이 있는지는 확실하지 않다고 경고합니다. “진정한 도전은 의사들이 그것을 사용하기 시작하도록 설득하는 것입니다.”라고 그는 말합니다. “정당한 이유로 그들은 매우 보수적이기 때문에 매우 어렵습니다.”

 

MRI 스캐너는 카메라처럼 작동하지 않습니다. 실제로 살아있는 조직의 양성자에 맞추는 라디오입니다. 작은 나침반 바늘처럼 각 양성자는 자성이며 일반적으로 양성자는 모든 방향으로 무작위로 가리 킵니다 (아래 그래픽 참조). 그러나 외부 자기장이 이들을 정렬할 수 있습니다. 이 시점에서 적절한 주파수와 지속 시간의 전파 펄스가 90° 기울일 수 있습니다. 그런 다음 정렬된 양성자는 자이로스코프처럼 빙글빙글 돌면서 자체 무선 신호를 방출하며, 그 주파수는 자기장의 강도에 따라 증가합니다.

 

그 덧없는 모노톤 라디오 윙윙거리는 소리는 거의 드러내지 않습니다. 이미지를 만들려면 스캐너가 신체의 다른 지점에서 오는 파도를 구별해야 합니다. 이를 위해 자기장을 조각하여 다른 위치의 양성자가 다른 주파수와 동기화 상태에서 노래하도록합니다. 스캐너는 또한 한 유형의 조직을 다른 조직과 구별해야 하며, 이는 무선 신호가 다른 조직에서 다른 속도로 퇴색한다는 사실을 이용하여 수행합니다.

 

신호가 사라지는 한 가지 이유는 양성자가 자체 자기장을 통해 서로 정렬되지 않기 때문입니다. 이것이 일어나는 속도는 예를 들어 지방 뇌 물질과 물 뇌척수액 사이에서 다릅니다. 속도를 측정하기 위해 스캐너는 펄스 쌍을 적용합니다. 첫 번째 펄스는 빙글빙글 도는 양성자의 방향이 펼쳐지면서 희미해지는 신호를 생성합니다. 두 번째는 그 진화의 많은 부분을 뒤집어 신호의 반향을 이끌어냅니다. 그러나 양성자-양성자 상호 작용은 그 에코를 음소거합니다. 따라서 스캐너는 두 펄스 사이의 지연이 증가함에 따라 에코가 어떻게 줄어들는지 추적하여 속도를 측정할 수 있습니다.

 

한 쌍의 펄스를 적용하는 동안 스캐너는 뇌의 다른 지점에서 오는 에코를 동시에 정렬해야 합니다. 이를 위해서는 중요한 순간에 적용된 자기장 구배에 의존합니다. 예를 들어, 턱에서 정수리까지 에코 중에 적용된 그라디언트는 머리를 통해 다른 측면 조각의 양성자를 다른 주파수로 방사합니다. 펄스 사이와 머리를 가로질러 적용된 그라디언트는 빙글빙글 돌기에서 앞이나 뒤에 수직 슬라이스로 양성자를 설정하며, 일부 슬라이스의 에코가 서로를 강화하고 다른 슬라이스를 취소하는 “위상”차이 입니다. 그래디언트를 변경하여 스캐너는 각 슬라이스에서 에코의 강도를 추론할 수 있습니다.

 

많은 반복을 통해 스캐너는 강도가 지연, 주파수 및 위상에 따라 변하는 과다한 에코를 수집합니다. 표준 수학적 알고리즘은 이를 디코딩하여 양성자 – 양성자 상호 작용이 뇌 전체에서 어떻게 변하는지 지도를 생성하여 한 가지 유형의 MRI 이미지를 형성합니다. 다른 펄스 시퀀스는 유체 흐름을 추적할 수 있는 양성자 확산 속도와 같은 다른 조직 특이적 프로세스를 조사합니다.

이 모든 맥동은 MRI 스캔에 시간이 걸리는 이유와 MRI 기계가 짹짹 울리고, 딸깍 소리를 내고, 윙윙 거리는 이유를 설명합니다. 이러한 소리는 기계적 응력이 자기 구배를 생성하는 전류 전달 코일을 덜거덕거리면서 나타납니다. 기술자는 그 소리만으로 기계가 어떤 종류의 스캔을 하고 있는지 알 수 있다고 Yadlapalli는 말합니다.

 

더 강한 필드는 양성자를 더 철저히 편광하고 더 큰 신호를 생성함으로써 이 모든 것을 더 쉽게 만듭니다. 표준 스캐너의 자석은 지구 자기장의 30,000배에 달하는 1.5 테슬라의 자기장을 생성하며 일부는 3 또는 7테슬라에 이릅니다. 그런데도 1.5 테슬라 필드를 가리키는 양성자는 반대 방향을 가리키는 양성자보다 0.001 % 만 많습니다. 전계 강도를 25배 줄이면 분극도 함께 떨어집니다. 신호 대 잡음비는 거의 300배까지 훨씬 더 급락합니다.

 

원칙적으로, 저자장 스캐너는 전파 천문학자들이 몇 시간 또는 며칠 동안 별에 대한 요리를 훈련시켜 소음으로부터 약한 신호를 가려내는 것처럼 장기간에 걸쳐 자료를 수집하여 소음으로부터 신호를 유도할 수 있습니다. 그 방침은 그렇게 오래 가만히 있을 수 있는 인간에게는 작동하지 않을 것입니다. 따라서 저자장 MRI를 개발할 때 연구원들은 데이터를 훨씬 빠르게 추출할 방법을 찾아야 했습니다.

 

한 가지 핵심 요소는 더 나은 하드웨어라고 독일 파라과이 대학의 신경 엔지니어 인 Joshua Harper는 말합니다. “우리는 이제 정말 빠르고 저렴한 전자 제품을 가지고 있습니다.”라고 그는 말합니다. “그것이 정말로 작동하는 이유입니다.” 그런데도 병실에서 낮은 필드 MRI를 수행하는 것은 까다롭습니다. 다른 기계의 금속과 벽조차도 필드를 왜곡시킬 수 있으며 다른 장치의 정전기는 무선 신호를 방해할 수 있습니다. 따라서 스캐너는 대책을 사용합니다. 예를 들어, Hyperfine의 Swoop은 노이즈 캔슬링 헤드폰이 소리를 차단하는 방식과 유사하게 안테나를 사용하여 라디오 노이즈를 측정하고 취소합니다.

 

새로운 스캐너는 또한 더 빠르게 실행하기 위해 하단 필드의 측면을 유리하게 전환합니다. 양성자를 조작하려면 고자장 스캐너가 더 높은 주파수, 더 높은 에너지 전파를 사용해야 하므로 환자를 가열하기 시작하기 전에 너무 빨리 맥박할 수 있습니다. 이러한 속도 제한에서 벗어나 저자장 스캐너는 더 빠르게 펄스하고 더 효율적인 펄스 시퀀스를 사용할 수 있다고 Hyperfine을 공동 설립한 물리학자인 매사추세츠 종합 병원의 Matthew Rosen은 말합니다. “우리는 당신이 높은 필드에서 결코 할 수 없었던 일을 매우 빠르게 심문할 수 있습니다.”

 

그런데도 표준 이미지 재구성을 위해 충분히 빠르게 자료를 수집하는 것은 여전히 어려운 과제입니다. 한 가지 해결책은 인공 지능을 포함한 새로운 신호 처리 기술을 사용하는 것입니다. 하이퍼파인 엔지니어는 일련의 훈련 이미지를 사용하여 신경망이라는 프로그램을 가르쳐 상대적으로 희박한 데이터에서 뇌 이미지를 구성한다고 하이퍼파인의 최고 의료 책임자 겸 최고 전략 책임자인 칸 시디키(Khan Siddiqui)는 말합니다. “그것이 우리의 비밀 소스가 들어오는 곳입니다.”

 

표준 스캔과 비교할 때 낮은 필드 이미지는 더 흐릿하게 보입니다. 그런데도 물리학자들은 그 아름다움을 봅니다. “이 놀라운 물리학 성공 사례입니다.”라고 Rosen은 말합니다. “우리 뾰족한 머리 물리학자들이 아무도 신경 쓰지 않는 일을 하는 것이 아닙니다.” 이 기술은 현장의 잊혀진 구석에서 고군분투하는 사람들을 옹호한다고 McDowell은 말합니다. “영광이 11테슬라 기계를 만드는 데 있을 때 누가 제정신으로 65밀리 테슬라 기계를 만들겠습니까?”

 

HYPERFINE은 급습 스캐너가 꽤 영광스러운 출발을 하고 있다고 말합니다. 대부분 미국에서 100대 이상의 기계를 개당 약 $250,000에 판매했습니다. 목표는 고자장 스캐너를 대체하는 것이 아니라 MRI 사용 방법을 확장하는 것이라고 Siddiqui는 말합니다. “우리의 휴대용 스캐너는 MRI를 시간과 거리 모두에서 환자에게 더 가깝게 제공합니다.” 하이퍼파인은 신경 중환자실에서 이를 사용하여 너무 아프거나 불안정하여 기존 MRI 또는 일종의 3D 엑스레이를 생성하는 CT 기계로 이동할 수 없는 환자를 신속하게 평가할 계획입니다.

 

Swoop의 자석은 두 개의 디스크로 구성되며 64밀리 테슬라의 필드를 생성합니다. 스캔은 표준 스캔과 크게 다릅니다. 기존 스캐너에서는 자동 테이블이 원통형 자석으로 몸을 미끄러지듯 밀어 넣습니다. Swoop을 사용하면 유능한 환자가 자동차 범퍼 아래에서 꿈틀거리는 것처럼 자석에 뛰어들 수 있습니다. 안테나가 들어 있는 헬멧 같은 머리 부분은 코에 닿을 정도로 머리를 꼭 껴안고 있지만 팔과 다리는 자유롭습니다. 기계의 짹짹 울음은 부드럽고 진정됩니다.

 

2019년 말과 2020년 초에 코로나바이러스 전염병이 발생했을 때 Sheth와 동료들은 COVID-19에 걸린 20명을 포함하여 50명의 ICU 환자를 스캔하여 Swoop의 약속을 테스트했습니다. 많은 사람이 인공호흡기를 착용하고 진정제를 투여받았기 때문에 “우리는 그들의 신경 학적 상태가 무엇인지 전혀 몰랐고 사용 가능한 이미징 방식으로 살펴볼 방법이 없었습니다”라고 Sheth는 회상합니다. “그리고 이것은 우리에게 침대 옆에서 그렇게 할 방법을 제공했습니다.” 스캔 결과 8명의 COVID-19 환자를 포함하여 37건의 뇌 외상이 밝혀졌다고 연구원들은 2021년 1월 JAMA Neurology에 보고했습니다.

 

A patient receiving a low-field scan in an ICU hospital room. The portable scanner is positioned next to the patient’s bed, so that their head and shoulders rest inside the scanner and the rest of their body remains on the bed.

낮은 필드 MRI 스캐너는 예일 뉴 헤이븐 병원의 중환자실에서 침대에 있는 환자를 이미지합니다. 예일 의과 대학

 

더 저렴하고 작은 기계는 환자가 더 자주 후속 스캔을 받을 수 있도록 합니다. 이는 메릴랜드 대학교 칼리지파크의 물리학자이자 하이퍼파인의 공동 설립자인 로널드 월스워스(Ronald Walsworth)와 공감하는 전망입니다. 2007년, 당시 2살이었던 그의 아들은 비암성 뇌종양에 걸렸습니다. 그는 성공적으로 치료를 받았다고 Hyperfine의 자문위원회에서 근무하는 Walsworth는 말합니다. 그런데도 그는 “MRI가 가끔만 사용되기 때문에 징후가 조기에 발견되지 않고 가장 효율적으로 결정되지 않은 일이 있었습니다”라고 말합니다.

 

Swoop의 장점은 팬을 확보했습니다. “오, 세상에, 정말 아름답고 아름다운 기술입니다.”라고 Hyperfine에 재정적 관심이 없는 예일 대학의 소아 신경 외과 의사인 Steven Schiff는 말합니다. 그러나 Swoop은 1.5mm의 해상도가 표준 스캐너의 절반이기 때문에 고자장 스캐너가 포착할 수 있는 세부 사항을 놓칠 수 있습니다. 예를 들어, Sheth의 팀은 표준 MRI로 볼 수 있는 허혈성 뇌졸중을 앓은 50명의 환자의 뇌를 이미지화하는 데 사용했습니다. Swoop은 가장 작은 밀리미터 크기의 스트로크 5개를 놓쳤다고 연구원들은 2022년 4월 Science Advances에 보고했습니다.

 

이 발견은 의사가 각 유형의 스캐너를 언제 사용할지 결정할 때 판단을 내려야 함을 보여줍니다. “너무 걱정할 필요는 없지만 무언가를 놓칠 수 있는 상황을 이해해야 합니다.”라고 그는 말합니다. 그러나 McDowell은 의사들이 저자장 필드 스캐너를 사용하면 의료 과실 소송에 노출될 수 있다고 생각하면 이를 꺼릴 수 있다고 지적합니다.

 

세계의 많은 지역에서 MRI는 단순히 사용할 수 없습니다. 네덜란드의 한 팀은 스캐너가 이를 바꿀 수 있기를 희망합니다. 자석은 Swoop의 자석과 크게 다릅니다. 자동차 제조업체가 1980년대에 개발한 합금인 네오디뮴 철 붕소 4098 큐브로 구성되어 중공 플라스틱 실린더에 내장되어 있으며 균일한 수평장을 생성하기 위해 Halbach 어레이라는 구성으로 배열됩니다. 라이덴 대학 의료 센터의 MRI 물리학자인 앤드류 웹(Andrew Webb)은 “우리 시스템은 본질적으로 더 좋고 왜곡이 적기 때문에 기계 학습과 같은 처리의 도움이 덜 필요하다고 주장합니다.

 

스위스의 민간 기업인 Multiwave Technologies는 스캐너를 시장에 출시하기 위해 노력하고 있습니다. 올해 FDA 승인을 신청할 예정이며 구독 모델로 기계를 임대하는 것을 목표로 한다고 Multiwave의 공동 CEO인 Tryfon Antonakakis는 말합니다. “우리의 목표는 가능한 한 저렴하게 만드는 것이며 반드시 병원에 있을 필요는 없습니다.”라고 엔지니어이자 응용 수학자인 Antonakakis는 말합니다. “우리는 산으로, 개발 도상국의 의료 사막으로 가려고 합니다.”

 

델프트 공과대학의 응용 수학자인 Martin van Gijzen을 포함한 Webb과 그의 동료들은 기술을 전파하기위한 또 다른 계획을 하고 있습니다. “우리는 마틴, 저, 우리 팀 전체가 특허를 내지 않기로 했습니다.”라고 Webb은 말합니다. “모든 것이 오픈 소스가 될 것”이므로 누구나 인터넷에서 디자인을 다운로드하고 스캐너를 만들 수 있습니다. Webb과 동료들은 개발 도상국의 기업가들이 현지에서 제조하기를 희망합니다.

 

아이디어를 구상하기 위해 그들은 키트로 포장된 스캐너를 우간다 음바라라 과학 기술 대학의 생의학 엔지니어인 Johnes Obungoloch에게 배송했는데, 그는 Webb과 Schiff도 그곳에 있을 때 University Park에 있는 펜실베니아 주립 대학의 대학원생이었습니다. 2022년 11월, Webb과 다른 사람들은 Obungoloch와 그의 팀이 11일 만에 스캐너를 조립하는 것을 돕기 위해 우간다로 날아갔습니다.

 

Six people stand around a cylindrical magnet about 2 feet in diameter.

Johnes Obungoloch(오른쪽에서 두 번째), Joshua Harper(왼쪽에서 두 번째) 및 우간다의 소아과 병원에서 수술을 안내할 스캐너용 자석을 들고 있는 동료들.

 

곧 개발 도상국에서 저자장 MRI의 유용성을 테스트하는 프로젝트에 사용될 것입니다. 국제 비영리 단체가 운영하는 음발레의 55개 병상 규모의 소아 신경외과 시설인 우간다 CURE 아동 병원은 오부골로치의 스캐너, Swoop 및 CT 스캐너를 비교할 계획입니다. 의사는 뇌척수액이 뇌에 모여 압축되어 잠재적으로 쇠약하거나 치명적인 손상을 일으키는 뇌수종이 있는 어린이를 이미지화합니다. 전 세계적으로 뇌수종은 매년 400,000명의 어린이를 괴롭히며 CURE 병원 환자의 75%를 차지합니다. 아프리카에서는 감염이 일반적인 원인입니다.

 

수년 동안 Schiff와 병원의 동료들은 CT 스캔을 사용하여 체액이 뇌실로 배출되도록 하는 혁신적인 수술을 안내했습니다. 그러나 CT 스캔은 어린이를 상당한 X- 레이 방사선에 노출시켜 CURE 의사는 저자장 MRI 이미지가 외과의를 안내할 수 있는지를 확인합니다. “MRICT 스캔과 비슷한 것으로 판명되면 더 이상 CT 스캔을 사용해야 할 이유가 없습니다.“라고 프로젝트를 지휘하는 CURE의 의사인 Ronald Mulondo는 말합니다.

 

이 연구는 최종 정부 승인을 기다리고 있습니다. 성공하면 Obungoloch는 아프리카의 다른 6개 CURE 병원을 위해 더 많은 스캐너를 구축하고 일부 부품을 현지에서 조달할 계획입니다. 우간다에는 공공 의료 서비스가 있으므로 비전은 정부 자금에 달려 있다고 그는 말합니다.

 

그러나 다른 곳의 동료들과 마찬가지로 우간다의 의사들은 이 기술의 제한된 해상도에 대해 의구심을 가질 수 있다고 Obungoloch는 말합니다. “방사선 전문의는 그것을 보고 ‘음, 이것은 엉터리 이미지이며 우리는 당신이 그것을 얻는 데 얼마나 오래 걸렸는지 상관하지 않습니다.’라고 말합니다.” 정부 관리들은 또한 우간다인들이 아무리 유용하더라도 저해상도 이미징에 안주할 필요가 없다고 생각할 수도 있다고 그는 말합니다.

 

사실, 저자장 MRI 개발자들은 의료 영상에 대한 재고를 추진하고 있습니다. “최고의 기술은 최고 품질의 이미지를 제공할 수 있는 스캐너입니까, 아니면 가장 개선된 환자 결과를 가져올 수 있는 스캐너입니까?” Webb의 오픈 소스 장비를 공동 작업하고 Swoop을 인수하기를 희망하는 Harper는 묻습니다.

 

Sheth는 의사를 이길 수 있는 것은 스캐너를 위한 킬러앱인 “사용 사례”가 될 것이라고 말합니다. 예를 들어, 뇌졸중 치료를 위해 특수 구급차에 실릴 수 있습니다. 그는 Hyperfine과 다른 사람들이 그 사용 사례를 발견했는지 의문을 제기하지만, 그것이 올 것으로 예측합니다.

 

그런 다음 이길 환자가 있습니다. 하이퍼파인 스캐너에서 시간을 보낸 후 뇌하수체 종양 환자는 Yadlapalli에게 일반 MRI만큼 편안하지 않다고 털어놓습니다. 수술 때문에 여전히 코로 숨을 쉴 수 없다는 점에 주목하면서 그는 꼭 맞는 머리 바구니가 그를 괴롭혔다고 말합니다. “차라리 진짜 MRI로 넘어가고 싶어요.” 그를 마지 못해 개척자라고 부르십시오.

 

Correction, 24 February, 2:45 p.m.: This story has been updated to correctly identify the people in the photo with the magnet assembled in Uganda.

연구원들은 ADHD와 관련된 27가지 유전적 위험 변이를 확인합니다.

Researchers identify 27 genetic risk variants related to ADHD

https://www.news-medical.net/news/20230209/Researchers-identify-27-genetic-risk-variants-related-to-ADHD.aspx

의 간단 번역입니다.

 

Reviewed by Emily Henderson, B.Sc.Feb 9 2023

 

왜 어떤 사람들은 ADHD를 받고 다른 사람들은 그렇지 않습니까? 그리고 ADHD의 씨앗은 얼마나 일찍 또는 자궁에 뿌려집니까?

 

오르후스 대학 (Aarhus University)의 연구원들은 Nature Genetics 저널에 방금 발표된 대규모 연구에서 이 질문에 답하는 데 더 가까워졌습니다.

 

연구진은 국내 및 국제 파트너와 함께 ADHD 환자 38,691명과 ADHD가 없는 186,843명에서 6백만 개 이상의 유전적 변이를 연구했습니다. 이를 통해 일반적인 신경 발달 장애에 대한 27개의 유전적 위험 변이를 확인할 수 있었습니다.

 

위험 유전자는 뇌와 뉴런에서 발현됩니다.

이 연구는 특히 이전 연구에서 확인한 것보다 두 배 이상 많은 위험 변이를 발견하기 때문에 획기적입니다.

 

“유전적 변이”라는 용어는 DNA 코드의 특정 변이를 의미합니다. 이 경우 진단을 받지 않은 사람들보다 ADHD 환자에서 더 자주 관찰되는 변이체. DNA의 변이체는 예를 들어 유전자가 발현되는 정도와 그에 따라 유전자에 의해 암호화되는 단백질의 양에 영향을 미칩니다.

 

유전적 변이 (즉, DNA의 변이)를 특정 유전자에 연결함으로써 연구자들은 ADHD 환자에서 특히 영향을 받는 조직과 세포 유형에 대한 새로운 지식을 얻었습니다. 이 연구는 덴마크 iPSYCH 코호트, 아이슬란드의 deCODE Genetics 및 Psychiatric Genomics Consortium의 데이터를 기반으로 합니다.

 

그 후, 연구진은 결과를 다른 조직, 세포 유형 및 뇌 발달 단계에서 유전자 발현에 대한 기존 데이터와 결합했으며, ADHD에 관여하는 유전자가 광범위한 뇌 조직과 뇌 발달 초기에 특히 높은 수준의 발현을 하고 있음을 발견했습니다.

 

“이것은 ADHD를 뇌 발달 장애로 간주하여야 하며, 이것은 뇌의 초기 발달에 큰 영향을 미치는 유전자에 의해 영향을 받을 가능성이 크다는 것을 강조합니다.”

 

Ditte Demontis, 오르후스 대학교 생물 의학과 교수, 연구의 첫 번째 저자

 

또한, 연구자들은 ADHD의 위험을 증가시키는 유전학이 특히 뉴런, 특히 도파민성 뉴런에서 발현되는 유전자에 영향을 미친다는 것을 발견했습니다.

 

“이것은 도파민이 뇌의 보상 반응과 관련하여 역할을 하고 자주 사용되는 ADHD 약이 다른 뇌 영역에서 도파민의 농도를 증가시킴으로써 작동하기 때문에 흥미롭습니다. 우리의 결과는 ADHD 환자의 뇌에서 도파민의 불균형이 부분적으로 유전적 위험 요인에 기인한다는 것을 나타냅니다.”라고 Ditte Demontis는 말합니다.

 

집중력 감소 및 단기 기억과 관련

ADHD는 많은 일반적인 유전적 변이의 영향을 받으며, 각각은 위험을 약간 증가시킨다고 교수는 말합니다.

 

사실, 고급 통계 모델의 도움으로 연구자들은 ADHD의 위험을 증가시키는 약 7,300개의 일반적인 유전적 변이가 있다고 추정했습니다. 이러한 변종의 대다수 (84-98%)가 자폐증, 우울증 및 정신분열증과 같은 다른 정신 장애에도 영향을 미친다는 것은 특히 흥미롭습니다.

 

이전에 ADHD의 위험 변이가 사람의 인지 능력에 영향을 미칠 수 있음이 밝혀졌습니다.

 

이를 더 조사하기 위해 연구원들은 광범위한 신경인지 테스트를 받은 4,973명으로 구성된 독립적인 데이터 세트의 데이터를 분석했습니다. 어떤 변이가 ADHD의 위험을 증가시키는지에 대한 새로운 연구의 정보를 사용함으로써, 그들은 독립적인 데이터 세트에서 개인의 게놈에서 ADHD 위험 변이의 증가된 부하가 읽기 및 수학 능력 감소, 주의력 감소 및 단기 기억 감소와 관련이 있음을 발견했습니다.

 

“결과는 ADHD의 기초가 되는 생물학적 메커니즘에 대한 우리의 지식을 증가시키고 ADHD와 관련된 특정 유전자, 조직 및 세포 유형을 가리킵니다. 이 지식은 질병 메커니즘에 관한 추가 연구와 신약 표적 식별을 위한 출발점으로 사용될 수 있습니다.”라고 Ditte Demontis는 설명합니다.

 

그리고 연구는 후속 조처를 해야 한다고 그녀는 강조합니다.

 

“우리는 ADHD에 영향을 미치는 일반적인 변종 중 일부만 대응했습니다 – 잠재적으로 존재하는 7,300개 중 27개만 대응했습니다. 따라서 더 큰 유전 연구가 필요합니다.”라고 그녀는 말합니다.

 

국제 학제 간 협력이 앞으로 나아갈 길입니다.

대규모 국제 협력은 정신 질환 및 신경 발달 장애의 유전적 원인을 확인하는 데 중요합니다. 그렇게 하려면 이러한 조건을 가진 수만 또는 수십만 명의 사람들에 관한 연구가 필요하기 때문입니다. 현재의 ADHD 연구에서와 마찬가지로 유전학, 정신 의학, 심리학, 역학, 분자 생물학, 통계, 생물 정보학 및 컴퓨터 과학과 같은 다양한 전문 분야를 가진 100명 이상의 연구자가 참여하는 경우가 많습니다.

 

“유전적 및 생물학적 메커니즘을 더 많이 이해하기 위해서는 ADHD 환자를 더 많이 포함하는 더 큰 연구를 하는 것이 중요합니다.”라고 오르후스 대학 생물 의학과의 Anders Børglum 교수는 이 연구의 마지막 저자이자 덴마크 iPSYCH 프로젝트의 연구 책임자 중 한 명입니다.

 

“그러나 유전적 위험 변이가 뇌세포 (뉴런)의 생물학적 과정을 교란하는 방법과 뇌에서 서로 결합하고 의사소통하는 방식을 식별하는 데 초점을 맞춘 연구를 수행하는 것도 중요합니다. 후자의 경우 뇌세포와 뇌의 초기 발달 단계, 소위 미니 뇌 또는 뇌 유기체가 현재 검사되고 있습니다.”라고 그는 말합니다.

Source:

Aarhus University

Journal reference:

Demontis, D., et al. (2023) Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics. doi.org/10.1038/s41588-022-01285-8.

신경 퇴행성 질환의 특징

Hallmarks of neurodegenerative diseases

https://www.sciencedirect.com/science/article/pii/S0092867422015756

의 간단 번역입니다.

 

요약

수십 년간의 연구를 통해 신경 퇴행성 질환들 (NDDs)과 관련된 유전적 요인과 생화학적 경로가 확인되었습니다. 우리는 NDD의 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸과 같은 NDD의 8가지 특징에 대한 증거를 제시합니다. 우리는 특징, 바이오마커 및 상호 작용을 전체론적 접근 방식을 사용하여 NDD를 연구하기 위한 프레임워크로 설명합니다. 이 프레임워크는 병원성 메커니즘을 정의하고, 주요 특징에 따라 다양한 NDD를 분류하고, 특정 NDD 내에서 환자를 계층화하고, NDD를 효과적으로 중단하기 위한 다중 표적 개인화된 치료법을 설계하기 위한 기초가 될 수 있습니다.

 

키워드

신경 퇴행성 질환신경 퇴행특징단백질 응집시냅스 및 신경 네트워크 기능 장애단백질끈 세포 골격결함 에너지 항상성DNA 및 RNA 결함염증

 

소개

신경 퇴행성 질환 (NDD)은 전 세계 수백만 명의 삶에 악영향을 미치는 이질적인 신경 장애 그룹이며 중추 신경계 (CNS) 또는 말초 신경계 (PNS)에서 뉴런의 점진적인 손실을 수반합니다. 신경망의 구조와 기능의 붕괴와 말기 차별화 특성으로 인해 효율적으로 갱신할 수 없는 뉴런의 손실은 핵심 통신 회로의 붕괴를 초래하여 기억, 인지, 행동, 감각 및/또는 운동 기능 장애로 절정에 달합니다.

 

우리는 이 리뷰에서 NDD를 정의하는 일련의 특징, 즉 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 대사 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸을 분명히 보여줍니다(그림 1).

 

그림 1. 신경 퇴행성 질환의 특징

 

이 체계는 기사에 설명된 8가지 특징을 식별하고 보여줍니다. 수십 년간의 기본, 번역 및 임상 연구를 바탕으로 많은 NDD의 기저에 있는 유전적 요인과 생화학적 경로가 확인되어 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸.

 

그림 2. 특징적인 응집 단백질, NDD의 뇌 영역과 연결되고 영향을 받는 유전자

 

그림 3. NDD 특징과 그 위치에 대한 개략적인 표현

 

그림 4. NDD를 효과적으로 중단하기 위한 개인화, 조합 및 다중 표적 치료의 기초로서 NDD를 분류하고 NDD 내에서 하위 유형을 식별하기 위한 프레임워크로서의 NDD의 특징과 상호 연결성

 

병리학 적 단백질 응집

병리학적 단백질 응집체는 NDD의 특징입니다.

유전학의 기계론적 통찰: 독성 기능의 획득 대 기능의 상실

프리온과 같은 번식

단백질 응집 및 독성

NDD 단백질 응집을 위한 바이오마커

비 단백 병성 신경 퇴행성 질환

시냅스 및 신경 네트워크 기능 장애

비정상적인 단백성

유비퀴틴-프로테아좀 시스템

자가포식 리소좀 경로

세포 골격 이상

변경된 에너지 항상성

DNA 및 RNA 결함

DNA 결함

RNA 결함

염증

신경 세포 사멸

NDD의 특징: NDD 연구를 위한 전체론적 접근 방식을 위한 프레임워크

NDD 특징의 상호 연결성은 다중 표적 치료의 필요성을 강조합니다.

NDD 간 및 NDD 내에서 공통점과 다양화를 식별하기 위한 프레임워크

임상 시험을 위한 특정 NDD 내에서 하위 유형의 계층화를 위한 프레임워크