태그 보관물: 뇌

만성 스트레스는 장에 염증을 일으킬 수 있다.

뇌에서 발생하는 신호는 신경 세포로 이동하여 염증성 화학 물질을 방출합니다.

심리적 스트레스는 특정 장 질환으로 인한 장 염증을 악화시키는 것으로 알려져 있습니다. 이제 과학자들은 그 이유를 알아냈습니다. 새로운 연구는 뇌에서 생성된 화학적 단서로 시작하여 장내 면역 세포로 끝나는 포괄적인 내러티브를 설명합니다. 이러한 조건을 가진 사람들에게 문제를 일으키는 시퀀스입니다.

오늘 Cell 에 발표된 이 연구는 만성 스트레스가 신체적 고통을 유발할 수 있는 방법을 설명하는 데 도움이 됩니다. 그리고 이는 스트레스 수준 관리가 염증성 장 질환(IBD) 치료 의 효과에 지대한 영향을 미칠 수 있음을 의미합니다 . 이 아이디어는 “치료에 대한 반응의 주요 동인으로서 환자의 심리적 상태를 완전히 무시해 온” 기존의 의학 치료와 상반된다고 필라델피아에 있는 펜실베니아 대학의 미생물학자인 연구 공동 저자인 크리스토프 타이스(Christoph Thaiss)는 말합니다. .

뇌에서 장으로 가는 길
복통, 설사 및 피로는 IBD 환자가 경험하는 증상 중 일부에 불과합니다. IBD의 두 가지 주요 유형인 궤양성 대장염과 크론병은 어떤 사람들에게는 경미하지만 다른 사람들에게는 쇠약하게 만들거나 심지어 생명을 위협할 수도 있습니다.

직장을 잃거나 파트너와 헤어지는 것과 같은 스트레스가 많은 사건은 종종 IBD 발적에 앞서 발생합니다. Thaiss와 그의 동료들은 이제 그 연관성을 추적했습니다. 스트레스가 급증하면 뇌는 부신에 신호를 보내고 부신은 글루코코르티코이드라는 화학 물질을 신체의 나머지 부분으로 방출합니다.

처음에 연구원들은 글루코코르티코이드가 염증을 유발하는 분자를 방출함으로써 반응하는 면역 세포에 직접 작용한다는 생각을 고려했습니다. “그러나 그 사이에 일종의 층이 있다는 것이 밝혀졌습니다.”라고 Thaiss는 말합니다. 생쥐를 대상으로 연구한 결과, 그들은 글루코코르티코이드가 대신 장내 뉴런과 장 뉴런을 서로 연결하는 신경아교세포에 작용한다는 사실을 발견했습니다.

공동 선택 면역 세포
글루코코르티코이드에 의해 스위치가 켜진 후 일부 신경아교세포는 면역 세포를 유발하는 분자를 방출합니다. 차례로, 그 면역 세포는 일반적으로 병원체와 싸우는 데 사용되는 분자를 방출하지만, 이 경우 결국 고통스러운 장 염증을 유발합니다.

동시에 글루코코르티코이드는 미성숙한 장 뉴런이 완전히 발달하는 것을 차단한다는 사실을 발견했습니다. 결과적으로 이러한 뉴런은 소화관 근육을 수축시키는 낮은 수준의 신호 분자만 생성합니다. 이는 음식이 소화 시스템을 통해 천천히 이동하여 IBD의 불편함을 더한다는 것을 의미합니다.

연구원들은 글루코코르티코이드가 장 염증을 유발한다는 사실을 알고 놀랐습니다. 이러한 화합물은 때때로 IBD 치료에 사용되기 때문입니다. 이 명백한 역설은 그러한 치료법이 사용되는 짧은 기간으로 설명될 수 있습니다. 글루코코르티코이드의 빠른 폭발은 항염증 효과가 있는 것처럼 보이지만 스트레스가 만성화되면 “시스템이 완전히 바뀌고” 글루코코르티코이드가 염증 유발 역할을 한다고 Thaiss는 말합니다. 그것은 “그럴듯한 설명”이라고 샌디에고 캘리포니아 대학교의 위장병학자이자 면역학자인 John Chang은 말합니다.

증상 완화를 위한 스트레스 관리
멀리 떨어진 기관에서 염증을 일으키는 뇌의 능력은 이전에 생각했던 것보다 “훨씬 더 강한 것 같다”고 Thaiss는 말합니다. 이것은 스트레스 관리 기술과 함께 IBD 약물이 약물 단독보다 더 효과적일 수 있음을 시사합니다. 뇌에서 장으로 이어지는 신호 전달 경로의 분자는 새로운 약리학적 치료의 표적이 될 수도 있습니다. “흥미로운 가능성”이라고 Chang은 말합니다.

작업의 의미는 IBD를 넘어 도달할 수 있습니다. 스트레스는 또한 유사한 신호 전달 경로를 통해 피부와 폐의 염증성 질환을 악화시키는 것으로 생각됩니다.

앞으로 Thaiss는 스트레스 이외의 뇌 상태가 사람의 전반적인 건강에 영향을 미치는지 여부를 탐구하게 되어 기쁩니다. “뇌에 대해 그리고 뇌가 겉보기에 관련이 없어 보이는 생리와 질병의 측면을 제어하는 ​​방법에 대해 우리가 여전히 배워야 할 엄청난 양이 분명히 있습니다.”

NEWS, 25 May 2023
Chronic stress can inflame the gut -now scientists know why
Signals originating in the brain make their way to gut nerve cells, leading to a release of inflammatory chemicals.

Schneider, K. M. et al. Cell https://doi.org/10.1016/j.cell.2023.05.001 (2023).

https://www.nature.com/articles/d41586-023-01700-y

문어가 팔로 맛보는 방법

초특화된 단백질은 문어와 오징어가 빨판으로 표면을 맛볼 수 있도록 하며, 이러한 단백질은 각 동물의 생활 방식에 맞게 조정됩니다.

NEWS, 12 April 2023

How octopuses taste with their arms

Ultra-specialized proteins enable octopuses and squids to taste surfaces with their suckers — and these proteins are tailored to each animal’s way of life.

https://www.nature.com/articles/d41586-023-01010-3

캘리포니아 두 자리 문어(Octopus bimaculoides)는 가장 좋아하는 음식 중 하나인 피들러 크랩(Leptuca pugilator)을 잡습니다. 크레딧: Peter Kilian

문어와 오징어는 둘 다 팔다리에 있는 빨판을 사용하여 먹이와 씨름하고 동시에 채석장을 맛봅니다. 이제 한 쌍의 연구는이 동물들이 어떻게 ‘만져서 맛보는지’와 진화가 어떻게 그들의 라이프 스타일에 완벽한 감각 능력을 갖추 었는지를 설명합니다1,2. 이 논문은 4월 12일 네이처(Nature)에 게재됐다.

이 연구는 동물의 빨판에 박힌 수용체의 구조를 자세히 설명합니다. 이 수용체는 생물이 물에 떠 있는 화학 물질과 독립적으로 표면의 화학 물질을 맛볼 수 있도록 하는 정보를 전달합니다.

 

두뇌로 무장

문어와 오징어를 포함하는 그룹인 두족류는 뇌와 감각 시스템이 다른 동물에서 발견되는 것과 다르므로 오랫동안 신경과학자들을 매료시켜 왔습니다. 예를 들어, 문어는 중앙 뇌보다 팔에 더 많은 뉴런을 가지고 있는데, 이는 각 팔이 마치 자신의 뇌를 가지고 있는 것처럼 독립적으로 기능할 수 있도록 하는 구조입니다3. 그리고 연구자들은 각 팔에 있는 수백 개의 빨판이 환경을 느끼고 맛볼 수 있다는 것을 오랫동안 알고 있었습니다4.

매사추세츠주 케임브리지에 있는 하버드 대학교의 분자 생물학자인 니콜라스 벨로노(Nicholas Bellono)와 그의 그룹은 캘리포니아 두 반점 문어(Octopus bimaculoides)를 연구하던 중 동물의 촉수 세포 표면에서 독특한 구조를 발견했습니다. Bellono는 이 구조가 문어 환경에서 화학 물질에 대한 수용체 역할을 한다고 의심했습니다. 그는 캘리포니아 샌디에이고 대학의 신경 생물학자 라이언 힉스 (Ryan Hibbs)에게 연락했는데, 그는 Bellono 팀이 발견한 문어 구조와 구조학적으로 유사한 수용체를 연구합니다 : 두 유형 모두 속이 빈 튜브를 형성하기 위해 클러스터링 된 5개의 배럴 모양의 단백질로 구성됩니다.

연구자들이 문어 게놈을 조사했을 때, 그들은 이 배럴 모양의 단백질에 대한 26개의 유전자를 발견했으며, 이를 섞어 다양한 취향을 감지하는 수백만 개의 별개의 다섯 부분 조합을 만들 수 있었습니다1. 연구진은 문어 수용체가 물에 녹지 않는 ‘기름기가 많은’ 분자에 결합하는 경향이 있음을 발견했으며, 이는 문어 껍질, 해저 또는 문어 자신의 알과 같은 표면의 화학 물질을 감지하는 데 최적화되어 있음을 시사합니다.

저자들은 빨판에 다양한 분자가 있으면 문어가 처리를 위해 이 정보를 뇌에 보낼 필요 없이 맛이 무엇인지 빠르게 결정할 수 있다고 생각합니다.

 

쓴 알약

Nature의 두 번째 연구에서 Bellono, Hibbs 및 동료들은 이러한 화학 수용체가 두족류에서 어떻게 발생하는지 연구했습니다2. 수용체는 다른 많은 유기체가 신경계를 통해 신호를 보내는 데 사용하는 수용체에서 진화한 것으로 보입니다.

연구진은 문어 수용체를 줄무늬 만두 오징어 (Sepioloidea lineolata)의 촉수 빨판에서 발견 된 수용체와 비교한 결과 오징어 수용체가 쓴맛을 내는 분자에 반응한다는 것을 발견했습니다. 이것은 오징어가 이 특정 취향에 따라 먹이를 받아들이거나 거부할 수 있음을 시사합니다.

오징어와 문어의 게놈을 분석한 결과, 오징어와 문어의 조상이 약 300억 년 전에 갈라진 후 수용체가 독립적으로 진화하여 시간이 지남에 따라 새로운 특성을 획득하는 것으로 나타났습니다. 오징어는 물에 떠서 먹이를 보고 촉수를 쏘아 포획하는데, 이는 빨판이 물고기를 만질 때까지 물고기를 맛보지 못한다는 것을 의미합니다. 그러나 해저에 앉아서 먹이를 찾는 경향이 있는 문어의 경우 다양한 민감한 촉수 빨판을 갖는 것이 중요합니다.

“그렇게 빨리 많은 통찰력을 얻는 것은 정말 흥미진진한 일입니다.”라고 일리노이주 시카고 대학의 진화 생물학자 클리프 래그스데일 (Cliff Ragsdale)은 말합니다. 그는 그 발견이 빨판이 문어의 뇌에 감각 정보를 보내는 방법과 뇌가 그것을 해석하는 방법을 포함하여 많은 질문을 제기한다고 말합니다.

doi: https://doi.org/10.1038/d41586-023-01010-3

References

Allard, C. A. H. et al. Nature https://doi.org/10.1038/s41586-023-05822-1 (2023).

Kang, G. et al. Nature https://doi.org/10.1038/s41586-023-05808-z (2023).

Gutnick, T., Zullo, L., Hochner, B. & Kuba, M. J. Curr. Biol. 30, 4322–4327 (2020).

Graziadei, P. P. C. & Gagne, H. T. J. Morphol. 150, 639–679 (1976).

모두를 위한 MRI

휴대용 저자장 스캐너는 부유한 국가와 가난한 국가의 의료 영상에 혁명을 일으킬 수 있습니다.

MRI FOR ALL

Portable low-field scanners could revolutionize medical imaging in nations rich and poor—if doctors embrace them

23 FEB 2023BYADRIAN CHO

https://www.science.org/content/article/mri-all-cheap-portable-scanners-aim-revolutionize-medical-imaging

 

은발의 충격을 받은 70대 남성인 이 환자는 예일 뉴헤이븐 병원의 신경 집중 치료실(신경 ICU)에 누워 있습니다. 그를 보면 며칠 전에 뇌하수체에서 종양이 제거되었다는 것을 결코 알지 못할 것입니다. 수술은 표준과 같이 외과의가 코를 통해 종양에 도달했기 때문에 흔적을 남기지 않았습니다. 그는 테스트중인 새롭고 잠재적으로 혁신적인 장치로 진행 상황을 확인하기 위해 온 한 쌍의 연구원과 유쾌하게 이야기합니다.

 

원통형 기계는 가슴 높이에 서 있으며 스타 워즈 로봇 인 R2D2의 우울한 형이 될 수 있습니다. 연구원 중 한 명이 630kg의 자체 추진 스캐너를 침대 머리까지 조심스럽게 안내하고 조이스틱으로 조종합니다. 연구원들은 침대 시트로 남자를 들어 올려 하이퍼파인이라는 회사에서 만든 휴대용 자기 공명 영상(MRI) 스캐너인 급습(Swoop)에 머리를 편하게 할 수 있도록 도와줍니다.

 

“귀마개를 원하십니까?”두 번째 연구원 인 Vineetha Yadlapalli가 묻습니다.

“일반 MRI만큼 시끄럽습니까?”

“전혀.”

“그럼 필요 없을 것 같아요.”

 

Yadlapalli는 환자의 다리를 받쳐서 등의 부담을 덜어준 후 iPad에서 몇 가지 지침을 탭하여 기계를 작동시킵니다. 기계가 낮은 으르렁 거리는 소리를 낸 다음 신호음과 딸깍 소리를 내며 계속합니다. 몇 분 안에 환자의 뇌 이미지가 Yadlapalli의 태블릿에 나타납니다.

 

30분 동안 남자는 조용히 누워 손을 배에 접었습니다. 그는 구식 헤어 드라이어에서 머리를 할 수 있습니다. 작은 의미에서 그는 이전에 한 번도 가본 적이 없는 곳에서 MRI를 찍는 데 도움을 주는 선구자입니다.

 

많은 경우 MRI는 의료 영상의 황금 표준을 설정합니다. 최초의 유용한 MRI 이미지는 1970년대 후반에 나타났습니다. 10년 이내에 상업용 스캐너가 의학을 통해 퍼져 의사는 뼈뿐만 아니라 연한 조직을 이미지화할 수 있게 되었습니다. 의사가 뇌졸중이 있거나 종양이 생기거나 무릎 연골이 찢어진 것으로 의심되면 MRI를 처방할 것입니다.

 

운이 좋으면 하나를 얻을 수 있습니다. MRI 스캐너는 자기장을 사용하여 살아있는 조직의 원자핵, 특히 수소 원자의 중심에 있는 양성자를 빙글빙글 돌려 전파를 방출합니다. 이 필드를 생성하기 위해 표준 스캐너는 기계 비용을 1.5백만 달러 이상으로 끌어올리는 크고 강력한 초전도 전자석을 사용하여 MRI 가격을 전 세계 인구의 70%가 사용할 수 없는 수준으로 책정합니다. 미국에서도 MRI를 받으려면 며칠을 기다려야 하고 한밤중에 멀리 떨어진 병원까지 운전해야 할 수도 있습니다. 환자는 스캐너로 와야 하며 그 반대가 되어서는 안 됩니다.

 

수년 동안 일부 연구자들은 책상 장난감에서 흔히 볼 수 있는 합금으로 만들어진 훨씬 더 작은 영구 자석을 사용하는 스캐너를 만들기 위해 노력해 왔습니다. 그들은 표준 MRI 자석보다 약 1/25 강한 자기장을 생성하는데, 한때는 너무 약해서 사용 가능한 이미지를 수집할 수 없었습니다. 그러나 더 나은 전자 장치, 보다 효율적인 자료수집 및 새로운 신호 처리 기술 덕분에 여러 그룹이 표준 MRI보다 해상도가 낮지만 낮은 필드에서 뇌를 이미지화했습니다. 그 결과 환자의 침대로 굴러갈 수 있을 만큼 작고 전 세계에서 MRI에 액세스할 수 있을 만큼 저렴할 수 있는 스캐너가 탄생했습니다.

 

Low-field MRI brain scan. The image is grainy, but shows the structure of the brain and a lighter-colored patch on the left side.

Traditional MRI scan of the same brain. The image is clearer, and the same light-colored patch is visible in more detail.

저필드 기계(첫 번째 이미지)의 뇌 스캔 해상도는 기존 MRI(두 번째 이미지)보다 거칠지만 두 이미지 모두 출혈을 분명히 드러냅니다. 예일 의과 대학

 

기계는 기술적 승리를 표시합니다. 하이퍼파인 스캐너를 테스트하고 있는 미국 국립표준기술연구소(National Institute of Standards and Technology)의 생의학 엔지니어인 캐서린 키넌(Kathryn Keenan)은 “모든 사람이 이 스캐너가 작동한다는 사실에 깊은 인상을 받았다”고 말합니다. 어떤 사람들은 스캐너가 의료 영상도 변화시킬 수 있다고 말합니다. “우리는 잠재적으로 완전히 새로운 분야를 열고 있다”라고 예일 의과 대학의 신경 학자인 케빈 셰스 (Kevin Sheth)는 Swoop과 광범위하게 일했지만, Hyperfine에 재정적인 관심은 없다. “‘이런 일이 일어날 것인가’의 문제가 아닙니다. 그것은 일이 될 것입니다.”

 

2020년 8월, Swoop은 뇌 이미징을 위해 미국 식품의약국(FDA) 승인을 획득한 최초의 저자장 스캐너가 되었으며 의사들은 예일 뉴헤이븐 및 기타 지역에서 임상 연구를 진행하고 있습니다. 다른 장치는 뒤에 있습니다. 그러나 물리학자이자 컨설팅 회사인 NeuvoMR, LLC의 설립자인 Andrew McDowell은 해상도가 낮은 저자장 스캐너 시장이 있는지는 확실하지 않다고 경고합니다. “진정한 도전은 의사들이 그것을 사용하기 시작하도록 설득하는 것입니다.”라고 그는 말합니다. “정당한 이유로 그들은 매우 보수적이기 때문에 매우 어렵습니다.”

 

MRI 스캐너는 카메라처럼 작동하지 않습니다. 실제로 살아있는 조직의 양성자에 맞추는 라디오입니다. 작은 나침반 바늘처럼 각 양성자는 자성이며 일반적으로 양성자는 모든 방향으로 무작위로 가리 킵니다 (아래 그래픽 참조). 그러나 외부 자기장이 이들을 정렬할 수 있습니다. 이 시점에서 적절한 주파수와 지속 시간의 전파 펄스가 90° 기울일 수 있습니다. 그런 다음 정렬된 양성자는 자이로스코프처럼 빙글빙글 돌면서 자체 무선 신호를 방출하며, 그 주파수는 자기장의 강도에 따라 증가합니다.

 

그 덧없는 모노톤 라디오 윙윙거리는 소리는 거의 드러내지 않습니다. 이미지를 만들려면 스캐너가 신체의 다른 지점에서 오는 파도를 구별해야 합니다. 이를 위해 자기장을 조각하여 다른 위치의 양성자가 다른 주파수와 동기화 상태에서 노래하도록합니다. 스캐너는 또한 한 유형의 조직을 다른 조직과 구별해야 하며, 이는 무선 신호가 다른 조직에서 다른 속도로 퇴색한다는 사실을 이용하여 수행합니다.

 

신호가 사라지는 한 가지 이유는 양성자가 자체 자기장을 통해 서로 정렬되지 않기 때문입니다. 이것이 일어나는 속도는 예를 들어 지방 뇌 물질과 물 뇌척수액 사이에서 다릅니다. 속도를 측정하기 위해 스캐너는 펄스 쌍을 적용합니다. 첫 번째 펄스는 빙글빙글 도는 양성자의 방향이 펼쳐지면서 희미해지는 신호를 생성합니다. 두 번째는 그 진화의 많은 부분을 뒤집어 신호의 반향을 이끌어냅니다. 그러나 양성자-양성자 상호 작용은 그 에코를 음소거합니다. 따라서 스캐너는 두 펄스 사이의 지연이 증가함에 따라 에코가 어떻게 줄어들는지 추적하여 속도를 측정할 수 있습니다.

 

한 쌍의 펄스를 적용하는 동안 스캐너는 뇌의 다른 지점에서 오는 에코를 동시에 정렬해야 합니다. 이를 위해서는 중요한 순간에 적용된 자기장 구배에 의존합니다. 예를 들어, 턱에서 정수리까지 에코 중에 적용된 그라디언트는 머리를 통해 다른 측면 조각의 양성자를 다른 주파수로 방사합니다. 펄스 사이와 머리를 가로질러 적용된 그라디언트는 빙글빙글 돌기에서 앞이나 뒤에 수직 슬라이스로 양성자를 설정하며, 일부 슬라이스의 에코가 서로를 강화하고 다른 슬라이스를 취소하는 “위상”차이 입니다. 그래디언트를 변경하여 스캐너는 각 슬라이스에서 에코의 강도를 추론할 수 있습니다.

 

많은 반복을 통해 스캐너는 강도가 지연, 주파수 및 위상에 따라 변하는 과다한 에코를 수집합니다. 표준 수학적 알고리즘은 이를 디코딩하여 양성자 – 양성자 상호 작용이 뇌 전체에서 어떻게 변하는지 지도를 생성하여 한 가지 유형의 MRI 이미지를 형성합니다. 다른 펄스 시퀀스는 유체 흐름을 추적할 수 있는 양성자 확산 속도와 같은 다른 조직 특이적 프로세스를 조사합니다.

이 모든 맥동은 MRI 스캔에 시간이 걸리는 이유와 MRI 기계가 짹짹 울리고, 딸깍 소리를 내고, 윙윙 거리는 이유를 설명합니다. 이러한 소리는 기계적 응력이 자기 구배를 생성하는 전류 전달 코일을 덜거덕거리면서 나타납니다. 기술자는 그 소리만으로 기계가 어떤 종류의 스캔을 하고 있는지 알 수 있다고 Yadlapalli는 말합니다.

 

더 강한 필드는 양성자를 더 철저히 편광하고 더 큰 신호를 생성함으로써 이 모든 것을 더 쉽게 만듭니다. 표준 스캐너의 자석은 지구 자기장의 30,000배에 달하는 1.5 테슬라의 자기장을 생성하며 일부는 3 또는 7테슬라에 이릅니다. 그런데도 1.5 테슬라 필드를 가리키는 양성자는 반대 방향을 가리키는 양성자보다 0.001 % 만 많습니다. 전계 강도를 25배 줄이면 분극도 함께 떨어집니다. 신호 대 잡음비는 거의 300배까지 훨씬 더 급락합니다.

 

원칙적으로, 저자장 스캐너는 전파 천문학자들이 몇 시간 또는 며칠 동안 별에 대한 요리를 훈련시켜 소음으로부터 약한 신호를 가려내는 것처럼 장기간에 걸쳐 자료를 수집하여 소음으로부터 신호를 유도할 수 있습니다. 그 방침은 그렇게 오래 가만히 있을 수 있는 인간에게는 작동하지 않을 것입니다. 따라서 저자장 MRI를 개발할 때 연구원들은 데이터를 훨씬 빠르게 추출할 방법을 찾아야 했습니다.

 

한 가지 핵심 요소는 더 나은 하드웨어라고 독일 파라과이 대학의 신경 엔지니어 인 Joshua Harper는 말합니다. “우리는 이제 정말 빠르고 저렴한 전자 제품을 가지고 있습니다.”라고 그는 말합니다. “그것이 정말로 작동하는 이유입니다.” 그런데도 병실에서 낮은 필드 MRI를 수행하는 것은 까다롭습니다. 다른 기계의 금속과 벽조차도 필드를 왜곡시킬 수 있으며 다른 장치의 정전기는 무선 신호를 방해할 수 있습니다. 따라서 스캐너는 대책을 사용합니다. 예를 들어, Hyperfine의 Swoop은 노이즈 캔슬링 헤드폰이 소리를 차단하는 방식과 유사하게 안테나를 사용하여 라디오 노이즈를 측정하고 취소합니다.

 

새로운 스캐너는 또한 더 빠르게 실행하기 위해 하단 필드의 측면을 유리하게 전환합니다. 양성자를 조작하려면 고자장 스캐너가 더 높은 주파수, 더 높은 에너지 전파를 사용해야 하므로 환자를 가열하기 시작하기 전에 너무 빨리 맥박할 수 있습니다. 이러한 속도 제한에서 벗어나 저자장 스캐너는 더 빠르게 펄스하고 더 효율적인 펄스 시퀀스를 사용할 수 있다고 Hyperfine을 공동 설립한 물리학자인 매사추세츠 종합 병원의 Matthew Rosen은 말합니다. “우리는 당신이 높은 필드에서 결코 할 수 없었던 일을 매우 빠르게 심문할 수 있습니다.”

 

그런데도 표준 이미지 재구성을 위해 충분히 빠르게 자료를 수집하는 것은 여전히 어려운 과제입니다. 한 가지 해결책은 인공 지능을 포함한 새로운 신호 처리 기술을 사용하는 것입니다. 하이퍼파인 엔지니어는 일련의 훈련 이미지를 사용하여 신경망이라는 프로그램을 가르쳐 상대적으로 희박한 데이터에서 뇌 이미지를 구성한다고 하이퍼파인의 최고 의료 책임자 겸 최고 전략 책임자인 칸 시디키(Khan Siddiqui)는 말합니다. “그것이 우리의 비밀 소스가 들어오는 곳입니다.”

 

표준 스캔과 비교할 때 낮은 필드 이미지는 더 흐릿하게 보입니다. 그런데도 물리학자들은 그 아름다움을 봅니다. “이 놀라운 물리학 성공 사례입니다.”라고 Rosen은 말합니다. “우리 뾰족한 머리 물리학자들이 아무도 신경 쓰지 않는 일을 하는 것이 아닙니다.” 이 기술은 현장의 잊혀진 구석에서 고군분투하는 사람들을 옹호한다고 McDowell은 말합니다. “영광이 11테슬라 기계를 만드는 데 있을 때 누가 제정신으로 65밀리 테슬라 기계를 만들겠습니까?”

 

HYPERFINE은 급습 스캐너가 꽤 영광스러운 출발을 하고 있다고 말합니다. 대부분 미국에서 100대 이상의 기계를 개당 약 $250,000에 판매했습니다. 목표는 고자장 스캐너를 대체하는 것이 아니라 MRI 사용 방법을 확장하는 것이라고 Siddiqui는 말합니다. “우리의 휴대용 스캐너는 MRI를 시간과 거리 모두에서 환자에게 더 가깝게 제공합니다.” 하이퍼파인은 신경 중환자실에서 이를 사용하여 너무 아프거나 불안정하여 기존 MRI 또는 일종의 3D 엑스레이를 생성하는 CT 기계로 이동할 수 없는 환자를 신속하게 평가할 계획입니다.

 

Swoop의 자석은 두 개의 디스크로 구성되며 64밀리 테슬라의 필드를 생성합니다. 스캔은 표준 스캔과 크게 다릅니다. 기존 스캐너에서는 자동 테이블이 원통형 자석으로 몸을 미끄러지듯 밀어 넣습니다. Swoop을 사용하면 유능한 환자가 자동차 범퍼 아래에서 꿈틀거리는 것처럼 자석에 뛰어들 수 있습니다. 안테나가 들어 있는 헬멧 같은 머리 부분은 코에 닿을 정도로 머리를 꼭 껴안고 있지만 팔과 다리는 자유롭습니다. 기계의 짹짹 울음은 부드럽고 진정됩니다.

 

2019년 말과 2020년 초에 코로나바이러스 전염병이 발생했을 때 Sheth와 동료들은 COVID-19에 걸린 20명을 포함하여 50명의 ICU 환자를 스캔하여 Swoop의 약속을 테스트했습니다. 많은 사람이 인공호흡기를 착용하고 진정제를 투여받았기 때문에 “우리는 그들의 신경 학적 상태가 무엇인지 전혀 몰랐고 사용 가능한 이미징 방식으로 살펴볼 방법이 없었습니다”라고 Sheth는 회상합니다. “그리고 이것은 우리에게 침대 옆에서 그렇게 할 방법을 제공했습니다.” 스캔 결과 8명의 COVID-19 환자를 포함하여 37건의 뇌 외상이 밝혀졌다고 연구원들은 2021년 1월 JAMA Neurology에 보고했습니다.

 

A patient receiving a low-field scan in an ICU hospital room. The portable scanner is positioned next to the patient’s bed, so that their head and shoulders rest inside the scanner and the rest of their body remains on the bed.

낮은 필드 MRI 스캐너는 예일 뉴 헤이븐 병원의 중환자실에서 침대에 있는 환자를 이미지합니다. 예일 의과 대학

 

더 저렴하고 작은 기계는 환자가 더 자주 후속 스캔을 받을 수 있도록 합니다. 이는 메릴랜드 대학교 칼리지파크의 물리학자이자 하이퍼파인의 공동 설립자인 로널드 월스워스(Ronald Walsworth)와 공감하는 전망입니다. 2007년, 당시 2살이었던 그의 아들은 비암성 뇌종양에 걸렸습니다. 그는 성공적으로 치료를 받았다고 Hyperfine의 자문위원회에서 근무하는 Walsworth는 말합니다. 그런데도 그는 “MRI가 가끔만 사용되기 때문에 징후가 조기에 발견되지 않고 가장 효율적으로 결정되지 않은 일이 있었습니다”라고 말합니다.

 

Swoop의 장점은 팬을 확보했습니다. “오, 세상에, 정말 아름답고 아름다운 기술입니다.”라고 Hyperfine에 재정적 관심이 없는 예일 대학의 소아 신경 외과 의사인 Steven Schiff는 말합니다. 그러나 Swoop은 1.5mm의 해상도가 표준 스캐너의 절반이기 때문에 고자장 스캐너가 포착할 수 있는 세부 사항을 놓칠 수 있습니다. 예를 들어, Sheth의 팀은 표준 MRI로 볼 수 있는 허혈성 뇌졸중을 앓은 50명의 환자의 뇌를 이미지화하는 데 사용했습니다. Swoop은 가장 작은 밀리미터 크기의 스트로크 5개를 놓쳤다고 연구원들은 2022년 4월 Science Advances에 보고했습니다.

 

이 발견은 의사가 각 유형의 스캐너를 언제 사용할지 결정할 때 판단을 내려야 함을 보여줍니다. “너무 걱정할 필요는 없지만 무언가를 놓칠 수 있는 상황을 이해해야 합니다.”라고 그는 말합니다. 그러나 McDowell은 의사들이 저자장 필드 스캐너를 사용하면 의료 과실 소송에 노출될 수 있다고 생각하면 이를 꺼릴 수 있다고 지적합니다.

 

세계의 많은 지역에서 MRI는 단순히 사용할 수 없습니다. 네덜란드의 한 팀은 스캐너가 이를 바꿀 수 있기를 희망합니다. 자석은 Swoop의 자석과 크게 다릅니다. 자동차 제조업체가 1980년대에 개발한 합금인 네오디뮴 철 붕소 4098 큐브로 구성되어 중공 플라스틱 실린더에 내장되어 있으며 균일한 수평장을 생성하기 위해 Halbach 어레이라는 구성으로 배열됩니다. 라이덴 대학 의료 센터의 MRI 물리학자인 앤드류 웹(Andrew Webb)은 “우리 시스템은 본질적으로 더 좋고 왜곡이 적기 때문에 기계 학습과 같은 처리의 도움이 덜 필요하다고 주장합니다.

 

스위스의 민간 기업인 Multiwave Technologies는 스캐너를 시장에 출시하기 위해 노력하고 있습니다. 올해 FDA 승인을 신청할 예정이며 구독 모델로 기계를 임대하는 것을 목표로 한다고 Multiwave의 공동 CEO인 Tryfon Antonakakis는 말합니다. “우리의 목표는 가능한 한 저렴하게 만드는 것이며 반드시 병원에 있을 필요는 없습니다.”라고 엔지니어이자 응용 수학자인 Antonakakis는 말합니다. “우리는 산으로, 개발 도상국의 의료 사막으로 가려고 합니다.”

 

델프트 공과대학의 응용 수학자인 Martin van Gijzen을 포함한 Webb과 그의 동료들은 기술을 전파하기위한 또 다른 계획을 하고 있습니다. “우리는 마틴, 저, 우리 팀 전체가 특허를 내지 않기로 했습니다.”라고 Webb은 말합니다. “모든 것이 오픈 소스가 될 것”이므로 누구나 인터넷에서 디자인을 다운로드하고 스캐너를 만들 수 있습니다. Webb과 동료들은 개발 도상국의 기업가들이 현지에서 제조하기를 희망합니다.

 

아이디어를 구상하기 위해 그들은 키트로 포장된 스캐너를 우간다 음바라라 과학 기술 대학의 생의학 엔지니어인 Johnes Obungoloch에게 배송했는데, 그는 Webb과 Schiff도 그곳에 있을 때 University Park에 있는 펜실베니아 주립 대학의 대학원생이었습니다. 2022년 11월, Webb과 다른 사람들은 Obungoloch와 그의 팀이 11일 만에 스캐너를 조립하는 것을 돕기 위해 우간다로 날아갔습니다.

 

Six people stand around a cylindrical magnet about 2 feet in diameter.

Johnes Obungoloch(오른쪽에서 두 번째), Joshua Harper(왼쪽에서 두 번째) 및 우간다의 소아과 병원에서 수술을 안내할 스캐너용 자석을 들고 있는 동료들.

 

곧 개발 도상국에서 저자장 MRI의 유용성을 테스트하는 프로젝트에 사용될 것입니다. 국제 비영리 단체가 운영하는 음발레의 55개 병상 규모의 소아 신경외과 시설인 우간다 CURE 아동 병원은 오부골로치의 스캐너, Swoop 및 CT 스캐너를 비교할 계획입니다. 의사는 뇌척수액이 뇌에 모여 압축되어 잠재적으로 쇠약하거나 치명적인 손상을 일으키는 뇌수종이 있는 어린이를 이미지화합니다. 전 세계적으로 뇌수종은 매년 400,000명의 어린이를 괴롭히며 CURE 병원 환자의 75%를 차지합니다. 아프리카에서는 감염이 일반적인 원인입니다.

 

수년 동안 Schiff와 병원의 동료들은 CT 스캔을 사용하여 체액이 뇌실로 배출되도록 하는 혁신적인 수술을 안내했습니다. 그러나 CT 스캔은 어린이를 상당한 X- 레이 방사선에 노출시켜 CURE 의사는 저자장 MRI 이미지가 외과의를 안내할 수 있는지를 확인합니다. “MRICT 스캔과 비슷한 것으로 판명되면 더 이상 CT 스캔을 사용해야 할 이유가 없습니다.“라고 프로젝트를 지휘하는 CURE의 의사인 Ronald Mulondo는 말합니다.

 

이 연구는 최종 정부 승인을 기다리고 있습니다. 성공하면 Obungoloch는 아프리카의 다른 6개 CURE 병원을 위해 더 많은 스캐너를 구축하고 일부 부품을 현지에서 조달할 계획입니다. 우간다에는 공공 의료 서비스가 있으므로 비전은 정부 자금에 달려 있다고 그는 말합니다.

 

그러나 다른 곳의 동료들과 마찬가지로 우간다의 의사들은 이 기술의 제한된 해상도에 대해 의구심을 가질 수 있다고 Obungoloch는 말합니다. “방사선 전문의는 그것을 보고 ‘음, 이것은 엉터리 이미지이며 우리는 당신이 그것을 얻는 데 얼마나 오래 걸렸는지 상관하지 않습니다.’라고 말합니다.” 정부 관리들은 또한 우간다인들이 아무리 유용하더라도 저해상도 이미징에 안주할 필요가 없다고 생각할 수도 있다고 그는 말합니다.

 

사실, 저자장 MRI 개발자들은 의료 영상에 대한 재고를 추진하고 있습니다. “최고의 기술은 최고 품질의 이미지를 제공할 수 있는 스캐너입니까, 아니면 가장 개선된 환자 결과를 가져올 수 있는 스캐너입니까?” Webb의 오픈 소스 장비를 공동 작업하고 Swoop을 인수하기를 희망하는 Harper는 묻습니다.

 

Sheth는 의사를 이길 수 있는 것은 스캐너를 위한 킬러앱인 “사용 사례”가 될 것이라고 말합니다. 예를 들어, 뇌졸중 치료를 위해 특수 구급차에 실릴 수 있습니다. 그는 Hyperfine과 다른 사람들이 그 사용 사례를 발견했는지 의문을 제기하지만, 그것이 올 것으로 예측합니다.

 

그런 다음 이길 환자가 있습니다. 하이퍼파인 스캐너에서 시간을 보낸 후 뇌하수체 종양 환자는 Yadlapalli에게 일반 MRI만큼 편안하지 않다고 털어놓습니다. 수술 때문에 여전히 코로 숨을 쉴 수 없다는 점에 주목하면서 그는 꼭 맞는 머리 바구니가 그를 괴롭혔다고 말합니다. “차라리 진짜 MRI로 넘어가고 싶어요.” 그를 마지 못해 개척자라고 부르십시오.

 

Correction, 24 February, 2:45 p.m.: This story has been updated to correctly identify the people in the photo with the magnet assembled in Uganda.

연구원들은 ADHD와 관련된 27가지 유전적 위험 변이를 확인합니다.

Researchers identify 27 genetic risk variants related to ADHD

https://www.news-medical.net/news/20230209/Researchers-identify-27-genetic-risk-variants-related-to-ADHD.aspx

의 간단 번역입니다.

 

Reviewed by Emily Henderson, B.Sc.Feb 9 2023

 

왜 어떤 사람들은 ADHD를 받고 다른 사람들은 그렇지 않습니까? 그리고 ADHD의 씨앗은 얼마나 일찍 또는 자궁에 뿌려집니까?

 

오르후스 대학 (Aarhus University)의 연구원들은 Nature Genetics 저널에 방금 발표된 대규모 연구에서 이 질문에 답하는 데 더 가까워졌습니다.

 

연구진은 국내 및 국제 파트너와 함께 ADHD 환자 38,691명과 ADHD가 없는 186,843명에서 6백만 개 이상의 유전적 변이를 연구했습니다. 이를 통해 일반적인 신경 발달 장애에 대한 27개의 유전적 위험 변이를 확인할 수 있었습니다.

 

위험 유전자는 뇌와 뉴런에서 발현됩니다.

이 연구는 특히 이전 연구에서 확인한 것보다 두 배 이상 많은 위험 변이를 발견하기 때문에 획기적입니다.

 

“유전적 변이”라는 용어는 DNA 코드의 특정 변이를 의미합니다. 이 경우 진단을 받지 않은 사람들보다 ADHD 환자에서 더 자주 관찰되는 변이체. DNA의 변이체는 예를 들어 유전자가 발현되는 정도와 그에 따라 유전자에 의해 암호화되는 단백질의 양에 영향을 미칩니다.

 

유전적 변이 (즉, DNA의 변이)를 특정 유전자에 연결함으로써 연구자들은 ADHD 환자에서 특히 영향을 받는 조직과 세포 유형에 대한 새로운 지식을 얻었습니다. 이 연구는 덴마크 iPSYCH 코호트, 아이슬란드의 deCODE Genetics 및 Psychiatric Genomics Consortium의 데이터를 기반으로 합니다.

 

그 후, 연구진은 결과를 다른 조직, 세포 유형 및 뇌 발달 단계에서 유전자 발현에 대한 기존 데이터와 결합했으며, ADHD에 관여하는 유전자가 광범위한 뇌 조직과 뇌 발달 초기에 특히 높은 수준의 발현을 하고 있음을 발견했습니다.

 

“이것은 ADHD를 뇌 발달 장애로 간주하여야 하며, 이것은 뇌의 초기 발달에 큰 영향을 미치는 유전자에 의해 영향을 받을 가능성이 크다는 것을 강조합니다.”

 

Ditte Demontis, 오르후스 대학교 생물 의학과 교수, 연구의 첫 번째 저자

 

또한, 연구자들은 ADHD의 위험을 증가시키는 유전학이 특히 뉴런, 특히 도파민성 뉴런에서 발현되는 유전자에 영향을 미친다는 것을 발견했습니다.

 

“이것은 도파민이 뇌의 보상 반응과 관련하여 역할을 하고 자주 사용되는 ADHD 약이 다른 뇌 영역에서 도파민의 농도를 증가시킴으로써 작동하기 때문에 흥미롭습니다. 우리의 결과는 ADHD 환자의 뇌에서 도파민의 불균형이 부분적으로 유전적 위험 요인에 기인한다는 것을 나타냅니다.”라고 Ditte Demontis는 말합니다.

 

집중력 감소 및 단기 기억과 관련

ADHD는 많은 일반적인 유전적 변이의 영향을 받으며, 각각은 위험을 약간 증가시킨다고 교수는 말합니다.

 

사실, 고급 통계 모델의 도움으로 연구자들은 ADHD의 위험을 증가시키는 약 7,300개의 일반적인 유전적 변이가 있다고 추정했습니다. 이러한 변종의 대다수 (84-98%)가 자폐증, 우울증 및 정신분열증과 같은 다른 정신 장애에도 영향을 미친다는 것은 특히 흥미롭습니다.

 

이전에 ADHD의 위험 변이가 사람의 인지 능력에 영향을 미칠 수 있음이 밝혀졌습니다.

 

이를 더 조사하기 위해 연구원들은 광범위한 신경인지 테스트를 받은 4,973명으로 구성된 독립적인 데이터 세트의 데이터를 분석했습니다. 어떤 변이가 ADHD의 위험을 증가시키는지에 대한 새로운 연구의 정보를 사용함으로써, 그들은 독립적인 데이터 세트에서 개인의 게놈에서 ADHD 위험 변이의 증가된 부하가 읽기 및 수학 능력 감소, 주의력 감소 및 단기 기억 감소와 관련이 있음을 발견했습니다.

 

“결과는 ADHD의 기초가 되는 생물학적 메커니즘에 대한 우리의 지식을 증가시키고 ADHD와 관련된 특정 유전자, 조직 및 세포 유형을 가리킵니다. 이 지식은 질병 메커니즘에 관한 추가 연구와 신약 표적 식별을 위한 출발점으로 사용될 수 있습니다.”라고 Ditte Demontis는 설명합니다.

 

그리고 연구는 후속 조처를 해야 한다고 그녀는 강조합니다.

 

“우리는 ADHD에 영향을 미치는 일반적인 변종 중 일부만 대응했습니다 – 잠재적으로 존재하는 7,300개 중 27개만 대응했습니다. 따라서 더 큰 유전 연구가 필요합니다.”라고 그녀는 말합니다.

 

국제 학제 간 협력이 앞으로 나아갈 길입니다.

대규모 국제 협력은 정신 질환 및 신경 발달 장애의 유전적 원인을 확인하는 데 중요합니다. 그렇게 하려면 이러한 조건을 가진 수만 또는 수십만 명의 사람들에 관한 연구가 필요하기 때문입니다. 현재의 ADHD 연구에서와 마찬가지로 유전학, 정신 의학, 심리학, 역학, 분자 생물학, 통계, 생물 정보학 및 컴퓨터 과학과 같은 다양한 전문 분야를 가진 100명 이상의 연구자가 참여하는 경우가 많습니다.

 

“유전적 및 생물학적 메커니즘을 더 많이 이해하기 위해서는 ADHD 환자를 더 많이 포함하는 더 큰 연구를 하는 것이 중요합니다.”라고 오르후스 대학 생물 의학과의 Anders Børglum 교수는 이 연구의 마지막 저자이자 덴마크 iPSYCH 프로젝트의 연구 책임자 중 한 명입니다.

 

“그러나 유전적 위험 변이가 뇌세포 (뉴런)의 생물학적 과정을 교란하는 방법과 뇌에서 서로 결합하고 의사소통하는 방식을 식별하는 데 초점을 맞춘 연구를 수행하는 것도 중요합니다. 후자의 경우 뇌세포와 뇌의 초기 발달 단계, 소위 미니 뇌 또는 뇌 유기체가 현재 검사되고 있습니다.”라고 그는 말합니다.

Source:

Aarhus University

Journal reference:

Demontis, D., et al. (2023) Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics. doi.org/10.1038/s41588-022-01285-8.

신경 퇴행성 질환의 특징

Hallmarks of neurodegenerative diseases

https://www.sciencedirect.com/science/article/pii/S0092867422015756

의 간단 번역입니다.

 

요약

수십 년간의 연구를 통해 신경 퇴행성 질환들 (NDDs)과 관련된 유전적 요인과 생화학적 경로가 확인되었습니다. 우리는 NDD의 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸과 같은 NDD의 8가지 특징에 대한 증거를 제시합니다. 우리는 특징, 바이오마커 및 상호 작용을 전체론적 접근 방식을 사용하여 NDD를 연구하기 위한 프레임워크로 설명합니다. 이 프레임워크는 병원성 메커니즘을 정의하고, 주요 특징에 따라 다양한 NDD를 분류하고, 특정 NDD 내에서 환자를 계층화하고, NDD를 효과적으로 중단하기 위한 다중 표적 개인화된 치료법을 설계하기 위한 기초가 될 수 있습니다.

 

키워드

신경 퇴행성 질환신경 퇴행특징단백질 응집시냅스 및 신경 네트워크 기능 장애단백질끈 세포 골격결함 에너지 항상성DNA 및 RNA 결함염증

 

소개

신경 퇴행성 질환 (NDD)은 전 세계 수백만 명의 삶에 악영향을 미치는 이질적인 신경 장애 그룹이며 중추 신경계 (CNS) 또는 말초 신경계 (PNS)에서 뉴런의 점진적인 손실을 수반합니다. 신경망의 구조와 기능의 붕괴와 말기 차별화 특성으로 인해 효율적으로 갱신할 수 없는 뉴런의 손실은 핵심 통신 회로의 붕괴를 초래하여 기억, 인지, 행동, 감각 및/또는 운동 기능 장애로 절정에 달합니다.

 

우리는 이 리뷰에서 NDD를 정의하는 일련의 특징, 즉 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 대사 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸을 분명히 보여줍니다(그림 1).

 

그림 1. 신경 퇴행성 질환의 특징

 

이 체계는 기사에 설명된 8가지 특징을 식별하고 보여줍니다. 수십 년간의 기본, 번역 및 임상 연구를 바탕으로 많은 NDD의 기저에 있는 유전적 요인과 생화학적 경로가 확인되어 병리학적 단백질 응집, 시냅스 및 신경 네트워크 기능 장애, 비정상적인 단백질의 항상성, 세포골격 이상, 에너지 항상성 변화, DNA 및 RNA 결함, 염증 및 신경 세포 사멸.

 

그림 2. 특징적인 응집 단백질, NDD의 뇌 영역과 연결되고 영향을 받는 유전자

 

그림 3. NDD 특징과 그 위치에 대한 개략적인 표현

 

그림 4. NDD를 효과적으로 중단하기 위한 개인화, 조합 및 다중 표적 치료의 기초로서 NDD를 분류하고 NDD 내에서 하위 유형을 식별하기 위한 프레임워크로서의 NDD의 특징과 상호 연결성

 

병리학 적 단백질 응집

병리학적 단백질 응집체는 NDD의 특징입니다.

유전학의 기계론적 통찰: 독성 기능의 획득 대 기능의 상실

프리온과 같은 번식

단백질 응집 및 독성

NDD 단백질 응집을 위한 바이오마커

비 단백 병성 신경 퇴행성 질환

시냅스 및 신경 네트워크 기능 장애

비정상적인 단백성

유비퀴틴-프로테아좀 시스템

자가포식 리소좀 경로

세포 골격 이상

변경된 에너지 항상성

DNA 및 RNA 결함

DNA 결함

RNA 결함

염증

신경 세포 사멸

NDD의 특징: NDD 연구를 위한 전체론적 접근 방식을 위한 프레임워크

NDD 특징의 상호 연결성은 다중 표적 치료의 필요성을 강조합니다.

NDD 간 및 NDD 내에서 공통점과 다양화를 식별하기 위한 프레임워크

임상 시험을 위한 특정 NDD 내에서 하위 유형의 계층화를 위한 프레임워크