태그 보관물: 유전자

DNA 구조와 기능-과학 심화 탐구

DNA의 구조와 특징

DNA의 구성

(1) 뉴클레오타이드: 1분자의 인산 + 5탄당 + 염기로 구성된 DNA의 기본 구성단위이다.

– 인산: 음(-)전하를 띠고 있으며, 핵산이 산성을 띠게 하는 물질이다.

– 당: 5탄당으로 DNA는 디옥시리보스, RNA는 리보스를 갖는다. 1번 탄소와 5번 탄소 각각에는 염기와 인산이 연결되어 있다.

– 염기: 질소(N)를 포함한 물질로, 수용액에서 약염기의 성질을 나타낸다.

DEOXYRIBONUCLEIC ACID (DNA)

https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid

(2) 염기의 종류

– 퓨린 염기

– 피리미딘 염기

(3) DNA와 RNA의 비교

– 구성 당의 종류: DNA는 디옥시리보스, RNA는 리보스이다.

– 구성 염기의 종류: DNA와 RNA는 모두 A, G, C을 공통으로 가진다. T은 DNA에만, U은 RNA에만 존재한다.

The Structure and Function of DNA

https://www.ncbi.nlm.nih.gov/books/NBK26821/

DNA의 이중 나선 구조

(1) X선 회절 연구

– DNA가 이중 나선 구조로 되어 있다는 결정적인 증거는 윌킨스와 프랭클린의 DNA 결정체에 관한 X선 회절 연구로부터 얻었다.

– X선 회절 실험은 DNA의 입체 구조를 확인하는 방법으로 DNA를 농축하여 점성 용액으로 만든 다음 바늘로 한 가닥의 섬유(DNA 분자)를 뽑아낸 후, 적당한 습도 상태의 대기 중에 놓아두면 결정처럼 X선을 회절시킬 수 있다.

Discovery of DNA Structure and Function: Watson and Crick

https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/

(2) 샤가프의 법칙

– DNA에서 A, T, C, G의 양은 생물학적 종에 따라 다르다.

– DNA를 구성하는 염기 A와 T의 양이 서로 같고(A=T), G의 양과 C의 양이 서로 같다(G=C).

– DNA에서 퓨린 염기 총량(A + G)과 피리미딘 염기 총량(C + T)은 같다.

02 DNA 복제

Chargaff’s Rules: the Work of Erwin Chargaff

https://www.jbc.org/article/S0021-9258(20)61522-8/fulltext

DNA: Alternative Conformations and Biology

https://www.ncbi.nlm.nih.gov/books/NBK6545/

Z-DNA: the long road to biological function

https://www.nature.com/articles/nrg1115

Z-DNA and Z-RNA in human disease

https://www.nature.com/articles/s42003-018-0237-x

엑스선 회절

Rosalind Franklin’s X-ray photo of DNA as an undergraduate optical diffraction experiment

https://pubs.aip.org/aapt/ajp/article/86/2/95/1057814/Rosalind-Franklin-s-X-ray-photo-of-DNA-as-an

DNA 추출하기(실험), 식물 세포

생물학자는 유전자 발현과 기능을 연구하기 위하여 DNA 기술을 이용한다

DNA 미세배열은 RNA 발현 패턴과 그 외 다른 정보를 제공한다

유전 물질

유전자 발현의 조절

추천도서

이중나선, 제임스 왓슨 저자(글) · 최돈찬 번역, 궁리 · 2019년 07월 30일

유전자 로또, 캐스린 페이지 하든 저자(글) · 이동근 번역, 에코리브르 · 2023년 02월 24일

유전자 임팩트, 케빈 데이비스 저자(글) · 제효영 번역 · 배상수 감수, 브론스테인 · 2021년 05월 26일

DNA의 법칙, Transnational College of LEX 저자(글) · 강현정 번역 · 김영호 감수, Gbrain(지브레인) · 2020년 08월 28일

유전자 클로닝과 DNA분석, T.A.Brown 저자(글) · 이병무 , 김정국 , 이광호 , 최진 번역, 월드사이언스 · 2022년 06월 20일

https://simagebank.com/wp/599/

유전자 치료 혁명은 우리가 의약품 가격 책정에 관해 이야기하지 않으면 멈출 위험

The gene-therapy revolution risks stalling if we don’t talk about drug pricing

Regulation and new intellectual property laws are needed to reduce the cost of gene-editing treatments and fulfil their promise to improve human health.

유전자 편집 치료 비용을 줄이고 인간의 건강을 개선하겠다는 약속을 이행하기 위해서는 규제와 새로운 지적 재산권 법이 필요합니다.

A gene-editing therapy to correct deformed red blood cells in sickle-cell disease is in the works — but at what cost?Credit: Eric Grave/SPL

“우리는 데옥시리보스핵산(DNA)의 염 구조를 제안하고자 합니다 . “이 구조는 상당한 생물학적 관심을 끄는 새로운 특징을 가지고 있습니다.”

 

이 유명한 단어가 발표된 후 70년 동안 연구자들은 이러한 특징을 밝히고 의학에 활용하기 위해 엄청난 노력을 기울였습니다. 그 결과 질병의 유전적 원인과 이를 치료하기 위해 고안된 수많은 치료법에 대한 이해가 활발해졌습니다.

 

지금으로부터 70년 후, 세계는 2023년을 랜드마크로 돌아볼 수도 있습니다. 올해는 CRISPR–Cas9 유전자 편집을 기반으로 한 치료법의 첫 번째 승인을 볼 수 있습니다. 이 치료법은 신체의 비생식(체세포) 세포의 DNA를 수정하는 것과 관련이 있습니다. 유전자 편집을 통해 과학자는 곧 임상의가 게놈의 표적 영역을 변경하여 잠재적으로 질병을 유발하는 유전자를 ‘교정’할 수 있습니다. 미국, 유럽 연합 및 영국의 규제 당국은 겸상적혈구 질환을 치료하기 위해 이 접근법을 사용하는 요법을 평가하고 있으며 향후 몇 개월 내에 결정이 내려질 수 있습니다.

 

그러나 그러한 발전이 이루어지고 있음에도 연구자들은 질병 치료에 있어서 유전자 편집의 미래 역할과 다른 더욱 확립된 형태의 유전자 치료에 대해 걱정하고 있습니다. 유전자 요법은 현재 눈에 띄는 가격표를 달고 있어 이를 필요로 하는 많은 사람의 손이 닿지 않는 곳에 있습니다. 높은 가격은 유전자 치료 연구에 대한 정부 자금 지원자의 의지를 감소시킬 수 있습니다. 그리고 그 결과 연구 기관이 해당 분야에서 최고의 인재를 지속해서 유치하는 것이 더 어려워질 것입니다. 연구원, 특히 건강 경제학자는 더 저렴한 자금 조달 모델을 찾기 위해 업계 및 정부와 긴급하게 협력해야 합니다.

 

백만 달러짜리 치료

CRISPR–Cas9의 빠른 임상 경로는 바이러스를 사용하여 유전자를 세포로 이동시키는 유전자 치료법의 꾸준한 발전 때문에 마련되었습니다. 지난 10년 동안 규제 당국은 면역 세포를 조작하여 암을 치료하는 CAR-T 세포 치료법과 같은 여러 유전자 치료법을 승인했습니다. 수백 개가 더 임상 시험에 있습니다.

 

이러한 치료법은 일반적으로 단일 치료에 미화 100만 달러 정도의 비용이 들며 병원 입원 및 세포 분리 및 조작에 필요한 절차와 같은 관리 비용을 고려하면 더 큰 비용이 듭니다. 작년에 미국 식품의약처(FDA)는 혈액 응고를 손상하는 유전병인 B형 혈우병을 치료하는 최초의 유전자 요법. 가격은 치료 당 350만 달러로 세계에서 가장 비싼 약인 Hemgenix라는 치료법을 만듭니다.

 

유전자 치료법은 저분자 약물을 기반으로 하는 잘 확립된 치료법보다 개발 및 생산 비용이 더 많이 듭니다. 그러나 유전자 요법은 치료의 희망을 가져다 줄 수 있으며, 수혜자들은 값비싼 의약품에 대한 장기적인 의존과 입원의 위험에서 벗어날 수 있습니다. 일부는 이것이 높은 비용을 정당화한다고 주장했습니다. 치료법이 다운스트림 치료에서 수백만 달러를 절약할 수 있다면 초기 지출은 여전히 ​​전반적으로 비용을 절약할 것입니다. 결국, 시간이 지남에 따라 더욱 전통적인 치료 비용이 합산됩니다. 예를 들어 한 연구에 따르면 미국에서 64세까지 겸상적혈구 빈혈 환자를 치료하는 데 드는 비용은 170만 달러(KM)입니다. Johnson et al. Blood Adv . 7 , 365–374; 2023 ).

 

부유한 국가에서도 의료 시스템은 유전자 치료와 관련된 높은 초기 비용을 감당할 수 있는 장비가 부족합니다. 2021년 매사추세츠주 서머빌에 있는 치료제 개발업체인 Bluebird Bio는 가격에 대해 유럽 당국과 합의에 도달하지 못한 후 유럽에서 또 다른 혈액 장애인 β-지중해빈혈에 대한 유전자 치료제 판매 계획을 철회했습니다. 상대적으로 약가 규제가 적은 미국에 판매 노력을 집중할 것이라고 밝혔다.

 

그러나 미국에서도 비용이 중요합니다. 미국의 건강 보험은 종종 고용주에 의해 보조금을 받고 일부는 이미 내년에 유전자 치료에 대한 보장 범위를 제한할 것이라고 말하고 있다고 미국의 건강 경제 싱크 탱크인 임상 및 경제 검토 연구소의 스티븐 피어슨 소장은 말했습니다. 보스턴, 매사추세츠.

 

한편 저소득 및 중간 소득 국가들은 완전히 궁지에 몰렸습니다. β-지중해빈혈과 겸상적혈구병과 같은 일부 질병이 부유한 국가보다 세계의 가난한 지역에서 더 흔하다는 점을 고려하면 이는 특히 고통스러운 일입니다. 예를 들어 일부 사하라 사막 이남 지역에서는 약 2%의 어린이가 낫적혈구병을 가지고 태어난 것으로 추정됩니다. 검사가 거의 이루어지지 않는다는 점을 감안할 때 이는 과소평가된 것일 수 있습니다.

 

접근성 향상

겸상적혈구 질환에 대한 CRISPR–Cas9 치료 비용이 얼마인지 알기에는 너무 이릅니다. 개발자인 매사추세츠주 보스턴의 Vertex Pharmaceuticals나 매사추세츠주 케임브리지의 CRISPR Therapeutics는 요금을 공개하지 않았습니다. 그러나 연구원들은 다가올 가격표에 대비하고 있습니다.

 

지난 3월 런던에서 열린 인간 게놈 편집에 관한 제3차 국제 정상회의에서 토론 대부분은 특히 저소득 및 중간 소득 국가에서 유전자 편집 치료법을 이용할 수 있도록 하는 데 중점을 두었습니다. 초점은 그러한 치료법의 생산 및 테스트를 합리화하기 위한 기술적 접근 방식에 있었습니다. 예를 들어 겸상적혈구 치료는 임상의가 조혈 줄기세포를 분리 및 편집하고 체내에 남아 있는 줄기세포를 파괴한 다음 편집된 세포를 재주입해야 합니다. 이것을 분리된 세포가 아닌 체내에서 직접 수행할 수 있는 게놈 편집 절차로 전환하면 치료 비용이 저렴하고 접근하기 쉬워질 수 있습니다.

 

또 다른 매력적인 접근법은 이미 안전하고 효과적인 것으로 확인된 유전자 치료 플랫폼을 개발하는 것입니다. 그런 다음 유전자 요법 개발자는 처음부터 시작할 때 필요한 안전성 및 효능 테스트 없이 선택한 질병을 표적으로 하는 유전자를 교체할 수 있습니다.

 

그러나 이와 같은 기술 솔루션은 지금까지만 가능합니다. Pearson은 미국의 의약품 가격 책정은 치료법을 생산하는 데 드는 비용과는 거의 관련이 없다고 말합니다. 다른 국가에서 그 가격이 얼마나 내려갈지는 지적 재산권에 의해 제한될 수 있고 유전자 요법과 같은 생물학적 약물의 제네릭 복제품을 만드는 복잡성으로 인해 방해를 받을 수 있습니다. 일부 학술 센터는 제약 회사에 의존하지 않고 유전자 치료법을 개발하고 배포하려고 노력하고 있지만, 업계에서 찾을 수 있는 재정적 자원과 규제 전문 지식 없이 그러한 노력이 얼마나 확장될 수 있는지는 불확실합니다.

 

가격 책정 외에도 유전자 치료 기술은 규제 및 지적 재산권에 대한 논쟁에 빠져 있습니다. 이들 각각의 전개 방식에 따라 연구원들이 Watson과 Crick의 초기 발견을 활용하는 데 얼마나 멀리 갈 수 있는지가 결정됩니다. 과학자들이 이러한 논쟁에서 적극적인 역할을 하고 그러한 토론을 조만간 전면에 내세우는 것이 중요합니다.

Nature 616, 629-630 (2023)

doi: https://doi.org/10.1038/d41586-023-01389-z

https://www.nature.com/articles/d41586-023-01389-z

문어가 팔로 맛보는 방법

초특화된 단백질은 문어와 오징어가 빨판으로 표면을 맛볼 수 있도록 하며, 이러한 단백질은 각 동물의 생활 방식에 맞게 조정됩니다.

NEWS, 12 April 2023

How octopuses taste with their arms

Ultra-specialized proteins enable octopuses and squids to taste surfaces with their suckers — and these proteins are tailored to each animal’s way of life.

https://www.nature.com/articles/d41586-023-01010-3

캘리포니아 두 자리 문어(Octopus bimaculoides)는 가장 좋아하는 음식 중 하나인 피들러 크랩(Leptuca pugilator)을 잡습니다. 크레딧: Peter Kilian

문어와 오징어는 둘 다 팔다리에 있는 빨판을 사용하여 먹이와 씨름하고 동시에 채석장을 맛봅니다. 이제 한 쌍의 연구는이 동물들이 어떻게 ‘만져서 맛보는지’와 진화가 어떻게 그들의 라이프 스타일에 완벽한 감각 능력을 갖추 었는지를 설명합니다1,2. 이 논문은 4월 12일 네이처(Nature)에 게재됐다.

이 연구는 동물의 빨판에 박힌 수용체의 구조를 자세히 설명합니다. 이 수용체는 생물이 물에 떠 있는 화학 물질과 독립적으로 표면의 화학 물질을 맛볼 수 있도록 하는 정보를 전달합니다.

 

두뇌로 무장

문어와 오징어를 포함하는 그룹인 두족류는 뇌와 감각 시스템이 다른 동물에서 발견되는 것과 다르므로 오랫동안 신경과학자들을 매료시켜 왔습니다. 예를 들어, 문어는 중앙 뇌보다 팔에 더 많은 뉴런을 가지고 있는데, 이는 각 팔이 마치 자신의 뇌를 가지고 있는 것처럼 독립적으로 기능할 수 있도록 하는 구조입니다3. 그리고 연구자들은 각 팔에 있는 수백 개의 빨판이 환경을 느끼고 맛볼 수 있다는 것을 오랫동안 알고 있었습니다4.

매사추세츠주 케임브리지에 있는 하버드 대학교의 분자 생물학자인 니콜라스 벨로노(Nicholas Bellono)와 그의 그룹은 캘리포니아 두 반점 문어(Octopus bimaculoides)를 연구하던 중 동물의 촉수 세포 표면에서 독특한 구조를 발견했습니다. Bellono는 이 구조가 문어 환경에서 화학 물질에 대한 수용체 역할을 한다고 의심했습니다. 그는 캘리포니아 샌디에이고 대학의 신경 생물학자 라이언 힉스 (Ryan Hibbs)에게 연락했는데, 그는 Bellono 팀이 발견한 문어 구조와 구조학적으로 유사한 수용체를 연구합니다 : 두 유형 모두 속이 빈 튜브를 형성하기 위해 클러스터링 된 5개의 배럴 모양의 단백질로 구성됩니다.

연구자들이 문어 게놈을 조사했을 때, 그들은 이 배럴 모양의 단백질에 대한 26개의 유전자를 발견했으며, 이를 섞어 다양한 취향을 감지하는 수백만 개의 별개의 다섯 부분 조합을 만들 수 있었습니다1. 연구진은 문어 수용체가 물에 녹지 않는 ‘기름기가 많은’ 분자에 결합하는 경향이 있음을 발견했으며, 이는 문어 껍질, 해저 또는 문어 자신의 알과 같은 표면의 화학 물질을 감지하는 데 최적화되어 있음을 시사합니다.

저자들은 빨판에 다양한 분자가 있으면 문어가 처리를 위해 이 정보를 뇌에 보낼 필요 없이 맛이 무엇인지 빠르게 결정할 수 있다고 생각합니다.

 

쓴 알약

Nature의 두 번째 연구에서 Bellono, Hibbs 및 동료들은 이러한 화학 수용체가 두족류에서 어떻게 발생하는지 연구했습니다2. 수용체는 다른 많은 유기체가 신경계를 통해 신호를 보내는 데 사용하는 수용체에서 진화한 것으로 보입니다.

연구진은 문어 수용체를 줄무늬 만두 오징어 (Sepioloidea lineolata)의 촉수 빨판에서 발견 된 수용체와 비교한 결과 오징어 수용체가 쓴맛을 내는 분자에 반응한다는 것을 발견했습니다. 이것은 오징어가 이 특정 취향에 따라 먹이를 받아들이거나 거부할 수 있음을 시사합니다.

오징어와 문어의 게놈을 분석한 결과, 오징어와 문어의 조상이 약 300억 년 전에 갈라진 후 수용체가 독립적으로 진화하여 시간이 지남에 따라 새로운 특성을 획득하는 것으로 나타났습니다. 오징어는 물에 떠서 먹이를 보고 촉수를 쏘아 포획하는데, 이는 빨판이 물고기를 만질 때까지 물고기를 맛보지 못한다는 것을 의미합니다. 그러나 해저에 앉아서 먹이를 찾는 경향이 있는 문어의 경우 다양한 민감한 촉수 빨판을 갖는 것이 중요합니다.

“그렇게 빨리 많은 통찰력을 얻는 것은 정말 흥미진진한 일입니다.”라고 일리노이주 시카고 대학의 진화 생물학자 클리프 래그스데일 (Cliff Ragsdale)은 말합니다. 그는 그 발견이 빨판이 문어의 뇌에 감각 정보를 보내는 방법과 뇌가 그것을 해석하는 방법을 포함하여 많은 질문을 제기한다고 말합니다.

doi: https://doi.org/10.1038/d41586-023-01010-3

References

Allard, C. A. H. et al. Nature https://doi.org/10.1038/s41586-023-05822-1 (2023).

Kang, G. et al. Nature https://doi.org/10.1038/s41586-023-05808-z (2023).

Gutnick, T., Zullo, L., Hochner, B. & Kuba, M. J. Curr. Biol. 30, 4322–4327 (2020).

Graziadei, P. P. C. & Gagne, H. T. J. Morphol. 150, 639–679 (1976).

T 세포 수용체를 암호화하는 유전자는 사람과 집단에 따라 크게 다르다는 연구 결과가 있습니다.

Genes encoding T cell receptors vary greatly between persons and populations, study reveals

https://www.news-medical.net/news/20230216/Genes-encoding-T-cell-receptors-vary-greatly-between-persons-and-populations-study-reveals.aspx

의 간단 번역입니다.

 

Reviewed by Emily Henderson, B.Sc.Feb 16 2023

 

Karolinska Institutet의 연구원은 우리의 T 세포 수용체를 암호화하는 유전자가 사람과 인구에 따라 크게 다르다는 것을 발견했으며, 이는 우리가 예를 들어 감염에 다르게 반응하는 이유를 설명할 수 있습니다. 면역 저널에 발표된 이 연구 결과는 또한 일부 유전자 변이가 네안데르탈인에게서 유전된다는 것을 보여줍니다.

 

면역 체계의 일부인 T 세포는 감염과 암에 대한 보호의 핵심입니다. TCR의 도움으로 세포는 외부 침입자와 종양 세포를 인식합니다.

 

“인간 TCR 유전자가 얼마나 가변적인지는 이전에 알려지지 않았습니다.”라고 Karolinska Institutet의 미생물학, 종양 및 세포 생물학과 교수이자 연구의 수석 저자인 Gunilla Karlsson Hedestam은 말합니다.

 

연구진은 혈액 샘플의 딥 시퀀싱을 사용하여 사하라 사막 이남의 아프리카, 동아시아, 남아시아 및 유럽에서 유래 한 45명의 TCR 유전자를 조사했습니다. 연구자들은 이 유전자가 다른 사람과 인구 집단에 따라 크게 다르다는 것을 보여주었습니다. 결과는 1000 게놈 프로젝트에서 수천 건의 추가 사례를 분석하여 확인되었습니다.

 

우리는 일란성 쌍둥이를 제외한 모든 개인이 고유한 TCR 유전자 변이체 세트를 가지고 있음을 발견했습니다. 이러한 차이는 우리가 인구 수준에서 관찰하는 감염 및 백신에 대한 광범위한 반응의 기초가 되는 가능한 메커니즘을 보여줍니다.”

 

Martin Corcoran, 연구의 첫 번째 저자

 

“우리는 175개의 새로운 유전자 변이를 발견했으며, 이는 알려진 TCR 유전자 변이의 수를 두 배로 늘렸습니다. 예상치 못한 놀라운 발견은 특정 유전자 변이가 네안데르탈인에서 유래했으며 이 중 하나가 유럽과 아시아의 현대인에서 최대 20%에 존재한다는 것입니다.”

 

Gunilla Karlsson Hedestam은 전체 게놈 시퀀싱에 사용되는 표준 방법으로는 이러한 유전자의 변이를 감지할 수 없지만 B 세포 및 T 세포 수용체 유전자를 매우 정확하게 정의할 수 있는 특수 심층 시퀀싱 방법 및 분석 소프트웨어의 개발로 이제 가능하다고 설명합니다.

 

“이 유전자는 우리 게놈에서 가장 가변적인 유전자 중 하나이기 때문에 결과는 또한 우리의 면역 체계가 역사의 과정에서 어떻게 발전했는지에 대한 새로운 정보를 제공한다고 Martin Corcoran은 말합니다. 우리는 특히 네안데르탈인의 조상으로부터 물려받은 TCR 변이체의 기능을 밝히는 데 관심이 있습니다. 현대 인간에서 이러한 변이의 빈도는 우리 생물학에서 유리한 기능을 시사하며 우리는 이것을 이해하기를 열망하고 있습니다”라고 Martin Corcoran은 덧붙입니다.

 

연구자들이 현재 발표하는 연구 결과와 새로운 TCR 유전자 데이터베이스는 미래의 새로운 치료법 개발에 매우 중요 할 수 있습니다.

 

“인간 유전학을 이해하는 것은 표적 치료법 개발의 기본입니다. 이 연구에 설명된 방법은 T 세포가 여러 유망한 형태의 면역 요법의 중심인 암 분야에서 새로운 기회를 제공합니다.”라고 Gunilla Karlsson Hedestam은 말합니다.

 

결과는 또한 다른 연구 분야에 빛을 비출 수 있습니다.

 

“이 발견은 정밀 의학을 포함한 다양한 의학 분야에서 새로운 진단 및 치료법의 개발로 이어질 수 있습니다”라고 Gunilla Karlsson Hedestam은 말합니다.

 

연구의 다음 단계는 무엇입니까?

 

“우리는 현재 새로 발견된 여러 유전자 변이의 기능적 중요성과 이 변이가 우리의 T 세포 반응에 어떤 영향을 미치는지 조사하고 있습니다. 우리는 또한 전염병, 암 및 자가 면역 질환과 같은 T 세포와 관련된 것으로 알려진 질병에서 TCR 유전자 변이의 역할을 조사하기 위해 대규모 개인 그룹을 대상으로 한 확장 연구를 계획하고 있습니다.”라고 Gunilla Karlsson Hedestam은 말합니다.

Source:

Karolinska Institutet

Journal reference:

Corcoran, M., et al. (2023) Archaic humans have contributed to large-scale variation in modern human T cell receptor genes. Immunity. doi.org/10.1016/j.immuni.2023.01.026.